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Traffic sensors serve as an important way to a number of intelligent transportation system applications which rely heavily on real-
time data. However, traffic sensors are costly. Therefore, it is necessary to optimize sensor placement to maximize various benefits.
Arterial street traffic is highly dynamic and the movement of vehicles is disturbed by signals and irregular vehicle maneuver. It is
challenging to estimate the arterial street travel time with limited sensors. In order to solve the problem, the paper presents travel
time estimation models that rely on speed data collected by sensor.The relationship between sensor position and vehicle trajectory
in single link is investigated. A sensor location model in signalized arterial is proposed to find the optimal sensor placement with
the minimum estimation error of arterial travel time. Numerical experiments are conducted in 3 conditions: synchronized traffic
signals, green wave traffic signals, and vehicle-actuated signals. The results indicate that the sensors should not be placed in vehicle
queuing area. Intersection stop line is an ideal sensor position. There is not any fixed sensor position that can cope with all traffic
conditions.

1. Introduction

Traffic sensors (e.g., magnetic detectors, cameras, and blue-
tooth detectors) are widely used in transportation system
for systematic surveillance. Various traffic applications need
different sensor data. OD estimation may require the traffic
counting information on links. Travel time estimation asks
for information about link travel time or path travel time.
These information can be obtained either from float vehicle
such as taxi or cameras which are able to read plate license
number. One of the most intuitive pieces of information
for advanced traveler information system is travel time.
Therefore, a simple and implementation-wise easy method is
needed to estimate travel time.

Attempt to estimate arterial street travel time is very chal-
lenging. Arterial street traffic is highly dynamic and the
movement of vehicles is disturbed by signals and irregular
vehicle maneuver. Zhang [1] developed a travel time and
journey speed estimation method for freeways by the uti-
lization of volume to capacity ratio, volume, and occupancy.
Skabardonis and Geroliminis [2] employed Kinematic wave
theory to model the spatial-temporal queueing at the signals.
Liu and Ma [3] proposed that loop detector data and signal
phase changes information, which in a high-resolution data

context are required to estimate travel time. Without using
traditional traffic flow theory, Takaba et al. [4] developed
some heuristic models for travel time estimation by using
loop detector and license plate reader. A neural network
framework is developed to fuse probe vehicle data and loop
detector data by Cheu et al. [5]. Dailey and Cathey [6]
employed probe sensor to define vehicle speed function.
Currently, Li et al. [7] studied that most of the travel time
estimation methods or algorithms require many sources of
real time data. Investment in these transportation surveil-
lance devices is costly, and thus providing these pieces of
real time information is expensive. Among all these traffic
sensors, loop detectors are relatively cheap and popular. In
addition, loop detectors are also widely used in travel time
estimation field [8, 9]. Due to the high cost of transportation
infrastructure, it is necessary to find away to save investment.

Sensor location problem works for this purpose. It aims
to find an optimal sensor placement pattern either in trans-
portation network or freeway. The purpose of sensor place-
ment is mainly for various flow estimations which are OD
trips estimation, link flows estimation, path flows estimation,
and its related application. Yang and Zhou [10] proposed four
sensor location rules in transportation network mainly for
OD estimation. This paper can be seen the seminal paper in
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the sensor location literature. Bianco et al. [11] introduced
a linear system approach for sensor location problem mod-
eling. Gentili and Mirchandani [12] extended linear system
approach by introducing active and passive sensors. Ehlert
et al. [13] presented several models to cover as many flows
as possible. OD estimation using generalized least-square
method is applied to seek for the optimal sensor placement
pattern by Fei et al. [14] and Eisenman et al. [15]. In addition
toOD estimation, path estimation or identification is another
hot topic. Normally, license plate reader is employed to
recognize route or estimate route travel time by Castillo et
al. [16] andMı́nguez et al. [17]. Modeling techniques adopted
are integer program. Commercial software or heuristics is
used for solving these problems. Hu et al. [18] studied the link
sensor placement problem to infer all link flow information
of the network of interests. Viti et al. [19] investigated partial
observation problems and gave a simple metric for quantify
the quality of a sensor placement pattern. Other sensor
location problems include mobile sensor routing problem
(Zhu et al. [20]), bottleneck identification oriented sensor
location problem (Liu andDanczyk [21]), and sensor location
problem considering time-spatial correlation (Liu et al. [22]).

Sensor location problem on freeway is relatively limited,
particularly for travel time estimation. Kim et al. [23] adopted
genetic algorithm to find an optimal sensor placement loca-
tion on freeway with the minimization of mean absolute
relative error. Kianfar and Edara [24] used clustering tech-
nology for optimizing freeway traffic sensors. Other freeway
sensor location problems employ empirical study methods
(Kwon et al. [25]), simulation (Thomas [26]), and dynamic
programming (Ban et al. [27]).

Due to the complexity of urban transportation system,
none of current studies consider combining travel time
estimation method with a sensor location pattern to seek
an optimal sensor placement pattern. Another important
characteristic of urban transportation system is traffic signal
control. This paper attempts to find optimal sensor location
pattern with traffic signals. A simulation tool is used to gen-
erate basic traffic flow data.The rest of this paper is organized
as follows. Section 2 offers a description of travel time esti-
mation method and partition rule in arterial street. Section 3
presents optimal sensor location pattern on a single link.
Section 4 gives results for multiple links and also with traffic
signal control. Section 5 concludes the whole paper.

2. Sensor Location Model Description

2.1. Section Partition Rule for Arterial Street. In our model,
a signalized arterial street is partitioned into sections. Each
section is associated with a sensor, and the speed of section
is represented by the average instantaneous speed (normally,
it is collected from the 30s time interval) at the sensor spot.
The estimated travel time of each section is calculated by the
length and speed of the section. By summing up estimated
travel time across all sections, the estimated arterial travel
time can be obtained.

In our study, the boundary of section is determined
by three sensors, which are located at the section and the

adjacent upstream and downstream section, respectively.The
total length of signalized arterial is set to 𝐿, the total number
of sensors is 𝑛, the location of the sensor 𝑖 is 𝑥

𝑖
, and the length

of section 𝑖 is 𝑙
𝑖
which is calculated as follows:

𝑙
𝑖

=

{{{{{{

{{{{{{

{
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𝑥2 − 𝑥1

2
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+
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2
, 𝑖 = 𝑛.

(1)

2.2. Travel Time Estimation Model. There are many travel
time estimationmodels, among which the speed-based travel
time estimation model is easy-to-operate and widely applied
[6–9, 28–30].These three models proposed by Li et al. [7] are
adopted in our study.The principle of all these threemodels is
to calculate travel time according to the spot-speed obtained
by sensors.

The first model is instantaneous model. A vehicle is
supposed to enter the arterial street at time 𝑘. The detected
speed at time 𝑘 is considered as the average speed of vehicles
at that section.The travel time of vehicle at section 𝑖 is denoted
as 𝑡(𝑖, 𝑘):

𝑡 (𝑖, 𝑘) =
𝑙
𝑖

V (𝑖, 𝑘)
, (2)

where 𝑙
𝑖
is the length of the section 𝑖 and V(𝑖, 𝑘) is the

measured speed of section 𝑖 at time 𝑘. The travel time 𝑇(𝑘)

of vehicle passing through the entire signalized arterial street
is the sum of all sections’ travel times:

𝑇 (𝑘) =

𝑛

∑

𝑖=1
𝑡 (𝑖, 𝑘) . (3)

In the instantaneous model, speeds from only one point
on each section are used to estimate travel time, while
ignoring the speed variations within a section. This does not
meet the authentic traveling situation of vehicles. However,
from the perspective of calculation, when the travel time
is fixed, its corresponding average speed is fixed. Therefore,
the sensor location pattern is very critical. A suitable senor
location pattern can accurately capture the average travel time
of its spatial influence area. On the other hand, all speeds
are collected at the time of vehicle entering the arterial. The
speed associatedwith the downstream sectionwill not change
dramaticallywhen the vehicle traverses the arterial.These two
reasons result in travel time estimation error. The other two
speed estimation models are Time Slice Model and Dynamic
Time Slice Model.

The difference among the three travel time estimation
models lies in the calculation method for vehicle speed on
each section, which is the main factor that affects error.These
three models all use the speed measured by sensors, so the
travel time estimation error is caused by not only inevitable
calculation error, but also the error arising from the location
of sensor in arterial street. Different combinations of sensor
locations generate different section partitions, thus, resulting
in different estimation errors.
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Figure 1: Partitioned arterial street with traffic signal.

To compare the differences among these three models,
numerical experiments are conducted for the identical sensor
location pattern. In our study, a traffic simulation tool is
used for a street with length 1 km as shown in Figure 1.
Intersection signal cycle is 100 s, green light duration is 60 s,
and the vehicle enters the street with a speed of 3.6 km/h.
The maximum speed is 57.6 km/h. The vehicle’s arrival rate
is 800 vph and obeys Poisson distribution. Sensors are evenly
distributed on the road at equal interval of 𝑙. The influential
area of each sensor is shown in Figure 1. The number of
sensors is increased from 1 to 10. Travel time is estimated with
above-mentioned three methods, respectively.

In order to compare the resulted obtained by these three
methods, we use three measures for evaluation which are the
mean absolute error (MAE), rootmean square error (RMSE),
and mean absolute relative error (MARE), respectively.

MAE =
1
𝑛

𝑛

∑

𝑖=1

ett𝑖 − gttt
𝑖

 ,

RMSE = √
1
𝑛

𝑛

∑

𝑖=1
(ett
𝑖

− gttt
𝑖
)
2
,

MARE =
1
𝑛

𝑛

∑

𝑖=1

ett𝑖 − gttt
𝑖



gttt
𝑖

.

(4)

ett
𝑖
refers to the estimated travel time, gttt

𝑖
refers to the

ground-truth travel time, and 𝑛 refers to the number of
vehicles. Through 10 traffic simulations, 10 groups of travel
time {𝑆

𝑟
| 𝑆
𝑟

= (gttt
𝑟1, gttt

𝑟2, . . . , gttt
𝑟𝑛

), 𝑟 = 1, 2, . . . , 10} are
obtained. These three travel time estimation methods were
used to calculate the corresponding estimated travel time and
theMAE

𝑟
,MARE

𝑟
, and RMSE

𝑟
respectively. Finally, 10 sets of

three measures are obtained for each travel time estimation
method. The mean values and standard deviations are cal-
culated according to these 10 sets of data. The experimental
results are shown in Figure 2.

As shown in Figure 2, the three estimation models have
little differences in most cases. Particularly, the time slice
model and dynamic time slice model almost obtain the same
results. The instantaneous model outperforms other two
estimation models, although instantaneous model (IM) only
makes estimation according to the traffic condition when
vehicle enters the street. But under the traffic signal control,
the traffic flow has certain reproducibility. The vehicle’s
travel time can be accurately estimated when the vehicles
traverse the arterial street smoothly.Therefore, in subsequent
experiments, IM method is adopted to estimate the travel
time.

3. Sensor Location Setting in Single Link

In the urban transportation network, the movement of
vehicles is with some regularity due to the traffic signal
control. Generally it can be summarized as, after passing
through previous intersection, vehicles enter the street at
low speed or original speed. Then, the vehicles accelerate
to the maximum allowable speed and keep moving. When
approaching the next intersection, it determines whether to
slow down or keep moving at the original speed according to
traffic signals.The speed contour profile is shown in Figure 3.

The key point of estimating vehicle’s travel time on a
certain link is to find the vehicle’s average speed on that link.
Vehicle moves with different speed at different positions of
the link. In order to accurately estimate travel time, we need
to find an appropriate location for the sensor, making sure
that the instantaneous speed is close to the average speed.
Therefore, the location of sensor has great impact on the
travel time estimation error. Figure 4 shows the relationship
between travel time estimation error (MARE) and different
sensor locations when a sensor is placed on a 1 km link under
different arrival rates.

As can be seen from Figure 4, the smallest travel time
estimation error is obtained when the sensor is placed at the
50m, and the mean travel time estimation error of the four
arrival rates is about 8%. In the link from 100m to 850m, the
sensor location has little impact on travel time estimation and
the error is about 29%. In the 100m of downstream section,
the travel time estimation error increases about 120%.

Sensor location pattern is closely related to the vehicle’s
trajectory on the link. (i) If a vehicle enters the intersection
at a slow speed and the sensor is placed at the inlet (0m)
position, where the average speed is small, the estimation
error will be large. (ii) If the vehicle accelerates to the
maximum speed after entering the link, the vehicle speed
varies greatly within this distance (from 3.6 to 56.6 km/h),
so it is easy to find a position that can represent the average
speed of the link. (iii) The vehicle runs at the limited speed
in the middle section of the link, and the speed fluctuation
is small. Therefore, no matter where the sensor is placed, the
detected speed is almost equal to the maximum speed. Thus,
it cannot reflect the average speed on the link. (iv)Within the
100m in the downstream, vehicles enter the queuing area.The
length of queue increases as the arrival rate increases. When
the sensor is closer to the intersection, the sensor is likely
to be occupied by vehicles. When the sensor is occupied, it
cannot detect speed. The estimation error is large. However,
when the arrival rate is less than the saturation volume, the
number of queuing vehicles is small. All the vehicles can pass
through the intersection in a signal cycle. The proportion
of sensor’s occupied time is small. Therefore, the travel time
can be estimated. When the arrival rate is greater than the
saturated volume, vehicles at the tail of the queue need to
wait for two or more signal cycles before passing through
the intersection.The sensor is more likely to be occupied and
cannot obtain vehicle speed during a long period of time.
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Figure 2: Errors and their standard deviations versus number of sensors.

4. Sensor Location in Arterial Street

4.1. Sensor Location Model Description. A signalized arterial
street is usually composed of many links, and there is a
traffic signal between every two links. In order to study
sensor placement pattern in such a signalized arterial street,
we divide arterial street into equal-length cells, as shown in

Figure 5. If a cell is equipped with a sensor, then the sensor
will be placed on the cell’s right boundary. Section is defined
as the influential area of the sensor. The partition method is
given in previous section.

Assume that the entire horizon of the study is𝑇 and a total
of 𝑀 vehicles pass through the entire street. 𝐾 sensors will be
placed on the arterial street; that is, there will be 𝐾 sections.
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Figure 3: Speed contour profile in a signal cycle.
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Figure 4: Estimate error versus different sensor locations.

The actual travel time of the 𝑚th vehicle that passes through
the arterial is GTTT

𝑚
, which is obtained by simulation. The

estimated travel time is ETT
𝑚
, which is the total sum of 𝐾

sections’ estimated travel time ETT
𝑚𝑘
. The goal of sensor

location model is to minimize the error between estimated
travel time and actual travel time.The decision variable of the
model is 𝑥

𝑖
∈ {0, 1}, which indicates whether the sensor is

placed on 𝑖th cell.Themodel is shown as follows and is called
M1:

M1:

min 1
𝑀

𝑀

∑

𝑚=1



(∑
𝐾

𝑘=1 ETT𝑚𝑘) − GTTT
𝑚

GTTT
𝑚



, (5a)

subject to:
𝑁

∑

𝑖=1
𝑥
𝑖

= 𝐾, (5b)

𝑥
𝑖

∈ {0, 1} , (5c)

𝑌 is set of the index of 𝑥
𝑖

where 𝑥
𝑖

= 1,

𝑦
𝑘
is the 𝑘th element in 𝑌,

(5d)

Link

SectionCell Section

Sensor

Figure 5: Partitioned arterial street.
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=
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{{{{{{

{

𝑦
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𝑘−1
2

, 𝑘 = 2, . . . , 𝐾 − 1

𝑦1 +
𝑦2 − 𝑦1

2
, 𝑘 = 1

𝑦
𝐾

+
𝑁 − 𝑦

𝐾

2
, 𝑘 = 𝐾,

(5e)

ETT
𝑘

=
𝑠
𝑘

V
𝑘

⋅ 𝑙. (5f)

In M1, 𝑀 is the number of total vehicles, 𝑁 is the
number of cells, and 𝐾 is the number of sensors, namely, the
budget constraint. 𝑥

𝑖
is the decision variable, and 𝑥

𝑖
= 1

indicates that the 𝑖th cell has a sensor; otherwise, 𝑥
𝑖

= 0.
𝑦 represents the set of cells that are installed with sensors,
wherein the total number of elements is 𝐾. For instance,
if the entire arterial street is divided into 10 cells, budget
constraints are three sensors, 𝑌 = {3, 6, 8} means that sensors
are placed in the 3th, 6th, and 8th cells. 𝑦

𝑘
refers to the 𝑘th

element of set 𝑌, and 𝑆
𝑘
is the coverage area of 𝑘th sensor,

namely, the number of cells contained in the 𝑘th section,
which is determined by the position of adjacent upstream
and downstream sensors. When the positions of a group of
sensors are given, the length of 𝐾 sections can be calculated.
Also taking 𝑌 = {3, 6, 8} as an example, 𝑠

1
covers 4.5 cells,

𝑠
2
covers 2.5 cells, and 𝑠

3
covers 3 cells. 𝑉

𝑘
is the average

speed of section 𝑘 which is calculated according to the speed
detected by corresponding sensor. After solving this model,
the optimal sensor placement pattern can be obtained. Due to
the complexity of the combinational optimization problem,
exact algorithm is very hard. Thus, in our study, genetic
algorithm is employed.

In this section, a mathematic model is proposed to solve
the sensor placement problem in arterial street. It is a 0-1 pro-
gramming model. The objective function is to minimize the
relative travel time estimation error between estimated and
actual travel time. The input data of the model is travel time
information of all vehicles in computer simulation which
is treated as ground-truth travel time. Once the ground-
truth travel time information is given, and our proposed
mathematical programming model can decide the optimal
sensor placement pattern that minimizes the relative travel
time estimation error.Therefore, ourmodel is amathematical
model. In addition, the model is deterministic.

4.2. Case Study. In this study, we only consider the influence
of vehicle arrival rate and traffic signal strategy on sensor
placement pattern which are two major factors that affect
travel time on urban network. In the simulation, the signal-
ized arterial street is set as 3 km long, and it is composed of
6 links. Each link is 0.5 km long. Each link is divided into
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Figure 6: Speed contour plot in synchronized traffic signals.

five cells, and each cell is 0.1 km long. The limited speed
is 57.6 km/h. Vehicle arrival rate at the entrance is set as
400 vph, 800 vph, 1200 vph, and 1600 vph, respectively, and
arrival rate obeys Poisson distribution. When the arrival rate
exceeds the intersection capacity, there will be congestion.
In each simulation, the arrival rate is fixed. In the urban
transportation network, traffic signals strategy can greatly
affect the capacity of each intersection and thereby affect
the trajectory of vehicle after entering the arterial street.
Therefore, we need to consider different traffic signals strate-
gies. In this study, we consider three common traffic signals
strategies: synchronized traffic signals, green wave traffic
signals, and vehicle-actuated signals. In the experiment, we
analyzed three strategies separately under different vehicle
arrival rates.

4.2.1. Synchronized Traffic Signals. Synchronized control
refers that all intersections of the arterial street use the same
signal configuration and display the same traffic signal at
the same time. In the simulation, the signal cycle is set as
100 s, and green ratio is 50%. Vehicle’s speed trajectories
under different arrival rates are shown in Figure 6. The 𝑥-
axis represents time, and the 𝑦-axis represents the vehicle
position. Speed is represented by different colors. Color
change from red to blue refers to the gradual decrease of

speed. Each row represents the speed variation of the same
position at different time points. Each column represents the
speed of each position at the same time.

According to Figure 6(a), the arrival rate is 400 vph,
which is far less than the intersection capacity. In the whole
simulation horizon, the number of vehicles that arrive at
the intersection is small, and all vehicles can pass through
the intersection within one signal cycle, so the queue length
of each intersection is short. In Figure 6(b), the vehicle
arrival rate is approximately equal to the intersection capacity.
Because the arrival rate obeys Poisson distribution, vehicles
have different actual arrival rates in each signal cycle. Some
arrival rates are greater than the intersection capacity, and
some are less than the intersection capacity. When the arrival
rate is greater than the intersection capacity in a signal cycle,
there will be multiple queues. While the queuing at the
downstream intersection spreads to the upstream, it reduces
the actual capacity of upstream intersection, making the
queuing at upstream section much longer as the first and
second intersections after 2000 s shown in Figure 6(b).When
the arrival rate is much greater than the intersection capacity,
some queuing vehicles may not be able to pass through the
intersection within one signal cycle. Vehicle release rate will
be exactly equal to the intersection capacity; that is, the
arrival rate of the next intersection is equal to the intersection
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Table 1: Comparison among different arrival rates.

Arrival rate
(vph)

Number of
sensors Sensor location pattern

400
800
1200
1600

6

500, 600, 1100, 1700, 2900, 3000
500, 600, 2000, 2300, 2500, 3000
1000, 1100, 1300, 2100, 2500, 2900∗
200, 500, 800, 1600, 2500, 2600

400
800
1200
1600

5

1100, 1200, 1300, 1500, 1700
200, 600, 1100, 1800, 2200

1000, 1200, 2000, 2300, 2900∗
100, 600, 1600, 2200, 2800

400
800
1200
1600

4

500, 800, 1900, 2300
500, 2100, 2700, 3000
200, 500, 1100, 2800
200, 400∗, 600, 2900

∗The sensor is located in the queuing area.

capacity. This intersection will not form a secondary queue.
As shown in the yellow rectangle of Figures 6(b), 6(c), and
6(d), if the queue of vehicles at the upstream intersection
is too long, then the queue of vehicles at the downstream
intersection is short.

Table 1 shows the optimal sensor placement pattern of
certain number of sensors at different arrival rates. Some
observations can be summarized as follows; (i) among the
12 optimal sensor placement patterns, only three patterns set
the sensor in the queuing area (blue area in Figure 6). The
bold numbers in Table 1 represent the queuing area, and the
corresponding influence areas of the 3 sensors are very short
which are 300m, 400m, and 200m, respectively. In these
three areas, blue area takes up a large proportion; that is,
the average speed of vehicles is small. The queuing is fairly
severe. Thus, when sensor is placed in the queuing area, the
corresponding influence area is with long queuing length.
This is because the average speed in queuing area is small.
It has great impact on the estimated travel time. The sensor
should not be placed in the queuing area. When sensor is
placed in the queuing area, its corresponding detection range
should not be too large, and it should be able to accurately
capture the length of the queuing. (ii) Among the 12 optimal
placement patterns, 9 patterns set sensors at one or more
stop line positions (positions 500, 1000, 1500, 2000, 2500, and
3000). Compared with other locations, the average speed of
vehicles at stop lines has the largest variations, and the speed
profile at stop line is repetitive with regard to cycle time.
When the red traffic light is on, the speed is 0. When the
green light is turned on, the speed gradually increases to the
maximum speed of 57.6 km/h. When the arrival rate is small,
the number of queuing vehicles is small, and then the average
speed is high. When the arrival rate is large, the number of
queuing vehicles is large, and then the average speed is low. In
addition, speed variation is determined by both the upstream
queuing and downstream traffic congestion situation. Thus,
when there are a lot of vehicles queuing at both the upstream
and downstream links, the sensor at stop line can timely and
flexibly detect the variation of traffic situation. (iii) When
the number of sensors is fixed, the corresponding sensor
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Figure 7: Comparison amongMARE in different number of sensors
for synchronized traffic signals.

placement patterns of different arrival rates vary greatly. This
is because different arrival rates leads to different queue
lengths, so the position of sensor should be determined by
the road conditions.

In Figure 7, each point represents the travel time esti-
mation error under the optimal sensor placement pattern.
This pattern is obtained under certain arrival rate and certain
number of sensors. When the arrival rate is 800 vph, 4
sensors are better than 5 or 6 sensors. When the arrival rate
is 1600 vph, 5 sensors are better than 6 sensors. Therefore,
optimizing the sensor placement pattern can reduce errors
and number of sensors. When the number of sensors is
4, MARE is in proportional with the arrival rate; that is
in this case, the estimation error cannot be reduced by
changing sensor location. However, the estimation error can
be reduced by increasing the number of sensors.

4.2.2. Influence of Green Ratio. Green ratio is an important
parameter in traffic signals strategy. Congestion occurs when
traffic volume is greater than the intersection capacity. In
order to timely dissipate queuing vehicles, green ratio should
be lengthened. When traffic volume is less than the inter-
section capacity, the green ratio should be carefully reduced.
Green ratiowill directly affect intersection capacity.When the
arrival rate is a constant, vehicle queuing will change, thus
affecting the position of sensor.

In order to study the influence of sensor location on
estimated travel time under different green ratios, we set
three green ratios, which are 40%, 50%, and 60%, respectively.
Other parameters are the same as previous section. By using
genetic algorithm, the optimal sensor placement pattern and
the travel time estimation errors are obtained. As shown in
Figure 8, each point represents the travel time estimation
error of the optimal sensor placement pattern. It can be seen
from Figure 8 that, regardless of the number of sensors, small
green ratio causes larger travel time estimation error. The
reason could be explained as that traffic condition becomes
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Figure 8: Comparison among different green ratios.

congested and complicated as the green ratio reduced.There-
fore, it is hard to predict the travel time.

4.2.3. Green Wave Traffic Signals. Green wave control means
that if a vehicle passes through one intersection at a given
speed with a green light phase, it will pass through all the

downstream intersections at green light phase [31].The offset
time of adjacent intersection’s traffic signal equals to the
length of the section divided by the given speed. If the vehicle
meets a red light phase at the intersection, it will stop andwait.
When the light turns green, the vehicle accelerates from zero
to the limited speed and moves to the next intersection. The
average speed of vehicle on the link is slightly less than the
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Table 2: Comparison among different arrival rates.

Arrival rate
(vph)

Number of
sensors Sensor location pattern

400
800
1200
1600

6

600, 700, 900, 1500, 2600, 3000
700, 1000, 1300, 1400, 2300, 2700
1500, 1700, 1800, 2100, 2600, 2800
800, 1200, 1400, 2300, 2400, 2800

400
800
1200
1600

5

1400, 1900, 2200, 2500, 3000
900, 1300, 2700, 2800, 3000
900, 1300, 1400, 2500, 2900
700, 800, 1600, 2400, 3000

400
800
1200
1600

4

1200, 1500, 2200, 2800
600, 800, 1100, 1300

1200, 1500, 2700, 2800
1300, 1500, 2600, 3000

limited speed and travel time is slightly larger than the offset
time. Therefore, during the green light period, if the number
of queuing vehicles exceeds the intersection capacity, vehicles
in the front of queue can successfully pass through the next
intersection. However, vehicles in the tail part of the queue
will meet red light at the next intersection.

In our simulation, the signal cycle is set as 100 s. Green
ratio is 50%. Each link is 0.5 km long. The limited vehicle
speed is 57.6 km/h. The relative offset time between adjacent
intersections is 32 s.Therefore, there will be a band alongwith
the arterial street. As long as the vehicle arrives within the
band and keeps moving at the limited speed of 57.6 km/h, it
can travel smoothly through the all intersections. Figure 11
shows the speed trajectories under four different arrival rates.
Generally speaking, vehicles can move at the maximum
speed on the road most of the time and can smoothly pass
through each intersection. If the arrival rate is greater than the
intersection capacity, the first intersection will have a small
number of queuing vehicles; this is, because some vehicles
enter the arterial street at a smaller speed, their travel time on
the link is greater than the travel time of vehicle which moves
at the limited speed (offset time). They will meet red light at
the first intersection.

Table 2 shows the corresponding optimal sensor place-
ment patterns of fixed number of sensors for different arrival
rates. All sensors are set after the first intersection. This is
because the first link has stable traffic condition without any
fluctuations under different arrival rates. This can be seen
from the four subgraphs of Figure 9. In the section from
0m to 500m, the vehicle accelerates to maximum speed and
moves to the first intersection after entering the arterial. In
this section, the speed trajectory is very similar. Besides,
like the synchronized traffic signal strategy, 10 out of the 12
patterns set the sensor on one or more stop lines.

Figure 10 shows the estimation error under the optimal
sensor placement pattern for greenwave traffic signal control.
Compared with other two signals strategies, it is easier to
estimate the travel time under green wave control. The
estimation error is less than 2%. Regardless of the arrival
rate, the travel time estimation error is minimized when
the number of detectors is 4. This is because that the traffic

condition is simple under the green wave traffic signals.
When the traffic is not complicated, less sensors should be
placed. When traffic condition is very complicated, more
sensors should be placed.

4.2.4. Vehicle-Actuated Traffic Signals. The above two traffic
signals strategies are fixed traffic signal control method.They
are developed based on historical data. The disadvantage of
these strategies is that it is unable to meet real-time changes
of traffic flow. In order to overcome this deficiency, vehicle-
actuated signals [32] are adopted. This strategy changes the
green time adaptively according to real-time traffic volume.

In the simulation of vehicle-actuated control, we set each
intersection’s signal cycle as 100 s. The minimum green time
is 50 s. The maximum green time is 70 s. The unit extension
interval is 3 s. When the arterial street gets the access right,
the signal system will first give the signal phase a minimum
green time of 50 s, enabling the vehicle that has arrived at the
intersection to pass through the intersection. If there is no
vehicle after this, the access right will be transferred to the
subsequent link. If a vehicle is detected within the green time,
the green time will be extended a unit time interval of 3 s.The
maximum extension can be 70 s.

Figure 11 is the speed trajectory for 4 different arrival
rates. Comparedwith the synchronized traffic signals control,
the queuing length at the intersection is shorter, and large-
scale long queue appears only once when the arrival rate is
1600 vph. When the traffic volume is large, the signal system
can detect the changes of volume, increasing the green time in
a timelymanner. As a result, intersection capacity is improved
and vehicle queue length is reduced. By comparing Figures 6
and 11, it can be seen that, under the vehicle traffic signals
control, the average vehicle queue length is short.

The optimal sensor location pattern under vehicle-
actuated traffic signals control is shown in Table 3. The
corresponding travel time estimation error of each optimal
sensor mode is shown in Figure 12. Similar to synchronized
traffic signals control, among the 12 optimum placement
patterns, only three patterns set the sensor in the queuing
area (see the bold numbers in the table). Two of these three
sensors have small detection coverage area, which are 250m
and 400m, respectively. 12 sensor location patterns all choose
to place the sensor on a stop line. As can be seen from
Figures 11(c) and 11(d), blue area takes up a large proportion
in these two areas; that is, the average speed of vehicles is
small and the queuing situation is severe. Thus, when the
sensor is located in queuing area, its corresponding influence
area is the area with long queues. This is because the average
speed of queuing area is small which has great impact on the
estimation of travel time.The sensors should be avoided from
being placed in queuing area. When the sensor is placed in
the queue area, its corresponding influence area should not
be too large. It should accurately correspond to the length
of the queue. In addition, it can be seen from Figure 12 that
(i) the travel time estimation error calculated by different
number of sensors differs slightly for different arrival rates.
(ii) As for a fixed number of sensors, travel time estimation
error increases as the arrival rate increases. (iii) Regardless of
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Figure 9: Speed contour plot in green wave traffic signals.
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Figure 10: Comparison among MARE in different number of
sensors for green wave traffic signals.

arrival rate, the estimated travel time predicted by 6 sensors
is the most accurate. The number of arrived vehicles within
one signal cycle changes the green time length adaptively,

resulting in the change of intersection capacity. The traffic
condition of each link becomes more dynamic and random
which differs greatly from the cyclical and repetitive traffic
condition under synchronized control. Therefore, it requires
more sensors to estimate travel time.

Through experimental analyses of these three traffic
signals strategies, observations are stated as follows: (i) when
the sensor is located in the queuing area, its corresponding
influence area is short. Its length should be close to the
queuing length. Therefore, when a sensor is located in the
queuing area, some sensors should be set in the adjacent
upstream and downstream areas in a cooperative manner.
(ii) Stop line is an ideal sensor position place. Compared
with other location places, the average speed of vehicles at
stop lines has the largest variations. Small arrival rate may
cause fewer queuing vehicles. The average speed is high. A
large arrival rate may cause more queuing vehicles, where the
average speed is low.The sensor can timely and flexibly reflect
the traffic conditions. (iii) Under simple traffic situation
where vehicle speed is stable with small speed fluctuation, few
sensors can accurately estimate travel time. Otherwise, more
sensors are needed.
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Figure 11: Speed contour plot in vehicle-actuated traffic signals.

Table 3: Comparison among different arrival rates.

Arrival rate
(vph)

Number of
sensors Sensor location pattern

400
800
1200
1600

6

200, 300, 500, 1100, 1400, 1800
400, 500, 1200, 1400, 1900, 2800
500, 600, 1900, 2200, 2600, 2900∗
500, 900∗, 1300, 1400, 2100, 2600

400
800
1200
1600

5

600, 700, 1300, 1500, 2200
600, 900, 1100, 1500, 1900
100, 500, 1800, 2100, 2400
900∗, 1000, 1900, 2300, 3000

400
800
1200
1600

4

600, 1000, 1100, 1700
400, 500, 1400, 2600
100, 500, 1300, 1900
300, 700, 1000, 2100

∗The sensor is located in queuing area.

5. Conclusion

The paper studies the sensor location problem in urban
arterial street for travel time estimation and proposes optimal
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Figure 12: Comparison among MARE in different number of
sensors for vehicle-actuated traffic signals.

sensor location model (M1) to obtain the minimum travel
time estimation error. Based on this model, the influence of
traffic signals strategies on sensor location is also discussed.
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By comparing the synchronized traffic signals, green wave
traffic signals, and vehicle-actuated signals, it is found that
sensor should not be placed in vehicle queuing area. If the
sensor is located in the queuing area, its associated coverage
area should include the vehicle queuing area as precise as
possible. Intersection stop line is an ideal sensor position.
There is not any fixed sensor position that can cope with
all traffic conditions, and the sensor location should be
determined according to the characteristics of traffic flow
on the road. Under simple traffic situation where vehicle
speed is stable and speed fluctuation is small, few sensors
can accurately estimate travel time. In case of complex traffic
conditions with large fluctuations of vehicle speed, more
sensors are required to estimate travel time.

The future research direction can be considered as fol-
lows: (i) our study only takes into account the traffic condition
of single lane with fixed traffic volume, and the future
research can consider more complex traffic situations, such
as the dynamic changes of multilane road with dynamic
traffic volume and other real phenomena that match with
actual road conditions. (ii) The future research can take this
study on urban arterial street as background, taking into
account the vehicle turnings, and study the sensor location
under the road network layout. (iii) A more efficient model
for algorithm should be explored in the future research,
although the genetic algorithm used in the paper is an
effective solutionmodel. (iv)The study only seeks the optimal
sensor location for travel time estimation. Future research can
focus on optimized combination of more traffic information
applications or more information applications.
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