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a b s t r a c t

In order to further improve the convergence performance of data clustering algorithms, a dynamic
shuffled differential evolution algorithm, DSDE for short, is presented in this paper. In DSDE, mutation
strategy DE/best/1 is employed, which can take advantage of the direction guidance information of best
individual so as to speed up the corresponding algorithm. Meanwhile, inspired by shuffled frog leaping
algorithm, a sorting scheme and a randomly shuffled scheme are used to divide a total population into
two subpopulations during the evolving process. In this way, mutation strategy DE/best/1 is actually
used in two subpopulations, respectively, which can effectively exchange information between two
subpopulations and balance the exploitation ability of DE/best/1/bin. In addition, most popular data
clustering algorithms suffer from the choice of initial clustering centers, which may cause a premature
convergence. Here a novel initial technique, called the random multi-step sampling, is integrated into
DSDE to overcome the shortcoming. Then an experiment tested on 11 well-known datasets has been
carried out, and the related results demonstrate that DSDE significantly outperforms DE/rand/1/bin and
DE/best/1/bin. Next, another comparison among DSDE and other four well-known data clustering
algorithms is conducted. The related results also show that DSDE is superior to other four approaches
including particle swarm optimization with age-group topology (PSOAG) in terms of objective function
value, i.e., the sum of intra-cluster distance. In a word, all the experimental results confirm that the
proposed algorithm DSDE can be considered as an excellent tool for data clustering.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is an unsupervised learning method that divides a
dataset into groups of similar objects by minimizing the similarity
between objects in different clusters and maximizing the similar-
ity between objects within the same cluster. When used on a set of
objects, it is helpful for identifying some inherent structures of the
set of objects. Thus, clustering analysis can play a key role in many
research fields including data mining, machine learning, bioinfor-
matics and so on. Especially, it can work well without any prior
information, which is also the main difference to supervised/
semisupervised classification. During the past five decades, many
research works have been proposed for data clustering [6]. That is,
the clustering problem has arisen many ways to cluster a dataset.
These approaches mainly focus on complex network approach
[1,27,29], K-means [4] and its enhanced variants [5,12,35,43],
swarm intelligent algorithms [2,3,7,9,11,15-25,28,31,32,35-37,44],
and others [8,10,13,14,26,30,33,34]. Among them, K-means algo-
rithm is one of the most popular algorithms, and it is an

unsupervised data clustering algorithm, which tries to divide an
entire dataset (i.e., X) into K clusters (i.e., C1;C2;…;CK ) through
randomly choosing K data points as initial cluster centers. How-
ever, K-means algorithm is sensitive to the selection of initial
points and may fail to cluster large scale datasets [12,36,43].

In order to overcome the shortcomings of K-means algorithm,
many researchers have focused on swarm intelligence algorithms,
which can perform parallel search in a complex search space so as
to better avoid local minima trap. For example, Chuang et al. [2]
proposed a chaotic particle swarm optimization (CPSO) for data
clustering by replacing the random parameters of PSO with chaotic
variables of the logistic map. Inspired by the crossover operator of
genetic algorithm, Yan et al. [22] proposed a hybrid artificial bee
colony algorithm (HABC) by introducing arithmetic crossover
operation in original artificial bee colony algorithm. Hatamlou
et al. [44] proposed a combined algorithm based on K-means
algorithm and gravitational search algorithm (GSA). The related
comparisons show that it is superior to both K-means algorithm
and GSA. More recently, Jiang et al. [11] proposed a novel age-
based particle swarm optimization, which is called the PSOAG. In
PSOAG, a novel technique of keeping population diversity is
introduced. Meantime, its superiority is obvious when compared
with ant colony optimization algorithm (ACO), particle swarm
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optimization (PSO), artificial bee colony algorithm (ABC) and
differential evolution (DE) algorithm in terms of fitness function
values and the clustering accuracy. In summary, the performances
achieved by these modified variants based on various evolutionary
computing techniques are better than before.

However, there still exists the shortcoming of premature
convergence in those modified evolutionary algorithms to some
extent. To be specific, the exploitation and exploration abilities of
existing evolutionary algorithms have to be further balanced.
Especially, the population diversity is necessary to be better kept
during the evolution process, and a better mechanism of informa-
tion sharing among different individuals are also needed to be
designed. In order to further improve the clustering effectiveness
of swarm based intelligent algorithms, a dynamic shuffled differ-
ential evolution, named DSDE, is proposed in view of the faster
convergence speed of DE [41,42]. When compared with DE/rand/
1/bin, DE/best/1/bin, ACO, ABC, PSO, and the recent PSOAG, the
superiority of DSDE is obvious.

The rest of the paper is organized as follows. In Section 2, the
problem formulation over data clustering is described. In Section 3,
the traditional differential evolution algorithm is briefly described.
Subsequently, a dynamic shuffled differential evolution, called the
DSDE, is presented in detail in Section 4. Nextly, comprehensive
experiments are conducted in Section 5 to validate the performance
of DSDE. Finally, a conclusion is drawn in Section 6.

2. Problem formulation

For the global optimization based clustering problem [3,22,50],
a clustering criterion, i.e., a degree of similarity, is needed, with
which a global assignment can be found by minimizing the
objective function of the sum of intra-cluster distance. As far as
the similarity measurement is concerned, there are various simi-
larity measurements such as Euclidian distance, Manhattan dis-
tance and Minkowski distance within some clustering researches.
In general, the Euclidian distance is usually considered as the
similarity measurement. In our study, the measurement of Eucli-
dean distance is also used to calculate the distance of any two
objects (oi and oj) within the cluster. Generally, it can be formu-
lated as follows [22,36]:

Dðoi; ojÞ ¼ Joi�oj J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
m ¼ 1

oim�ojm
� �2vuut ð1Þ

where d is the number of attributes of object, and oi and oj are two
different objects within the cluster, respectively.

Based on the above similarity measurement, a partition clus-
tering problem can be converted into a global optimization
problem, which can be described as follows [3,11,21]:

Minimize
Z;W

f ðZ;WÞ ¼
XK
k ¼ 1

Xn
i ¼ 1

wikDðxi; zkÞ ð2Þ

s:t:

XK
k ¼ 1

wik ¼ 1; i¼ 1;2;…;n; ðaÞ

wikAf0;1g; 8 iAf1;2;…;ng; kAf1;2;…;Kg ðbÞ:

8>><
>>: ð3Þ

where n is the number of all the samples, and K is the number of
given clusters, and xi represents the coordinates of the ith object in
current samples, and wik ¼ 1 means that the ith object is grouped
into the kth cluster, or else the ith object does not belong to the kth
cluster, and Dðxi; zkÞ denotes the distance between the ith object xi
and the center of kth cluster zk. It should be noted that
W ¼ fwik j i¼ 1;2;…;n; k¼ 1;2;…;K}, and Z ¼ fzk jk¼ 1;2;…;Kg.

What is more, the value of wik in Eq. (3) depends on a partition
criterion of samples. Namely, given a sample set X ¼ fx1; x2;…; xng,
determine a partition of all objects which satisfies the following
equations [3]:

XK
i ¼ 1

Ci ¼ X; ðaÞ

Ci \ Cj ¼ϕ; 8 i; jAf1;2;…;Kg4 ia j; ðbÞ
Ciaϕ; 8 iAf1;2;…;Kg ðcÞ:

8>>>><
>>>>:

ð4Þ

where Ciði¼ 1;2;…;KÞ is the objects set of ith cluster, and its
members can be determined by the following [3]:

Ci ¼ fxk j Jxk�zi Jr Jxk�zp J ; xkAXg; pa i; p¼ 1;2;…;K; ðaÞ

zi ¼
1

jCi j
P

xk ACi

xk; i¼ 1;2;…;K ðbÞ:

8><
>:

ð5Þ
where J � J represents the Euclidean distance of any two objects in
the sample set, and the mean of all objects within cluster i, zi,
denotes a new center of cluster i, which is often used in well-
known clustering technique k-means.

3. Differential evolution algorithm

Differential evolution algorithm, first proposed by Storn and
Price, is a simple yet powerful meta-heuristic algorithm for global
optimization over continuous search space [41]. Since its invention
in 1997, the DE algorithm has attracted many researchers to study
the creative algorithm. For example, Liu and Lampinen proposed a
fuzzy adaptive differential evolution algorithm by using a fuzzy
controller to adapt the control parameters [47]. Teo proposed a
parameterless differential evolution algorithm based on self-
adaption [48]. Rahnamayan et al. proposed an opposition based
differential evolution algorithm (ODE) [42], in which a novel
opposition based learning technique is proposed. Gong et al.
proposed a hybrid algorithm DE/BBO based on differential evolu-
tion and biogeography-based optimization [49].

Like other population-based intelligent algorithms, the first
phase is to randomly generate an initial population XðX ¼ fxi jxi
¼ ðxi1; xi2;…; xiDÞ; i¼ 1;2;…;NpgÞ in DE. Subsequently, DE enters a
loop composed of mutation, crossover, and selection operations.

3.1. Mutation

At this phase, a mutant vector vi is generated by the following
equation:

vi ¼ xaþF � ðxb�xcÞ ð6Þ
where i¼ 1;2;…;Np, and a; b; cAf1;2;…;Npg are random integer
number and aabaca i, and scale factor F is a real and constant
number within ½0;2�, which is employed to control the amplifica-
tion of differential deviation (xb�xc) [41].

3.2. Crossover

At the second phase, DE usually utilizes a binomial crossover
operation to produce a trial vector ui ¼ ðui1;ui2;…;uiDÞ according to
the following equation:

uij ¼
vij if rand 0;1½ �joCr3 j¼ ¼ jrand;
xij otherwise ;

(
ð7Þ

where i¼ 1;2;…;Np, and j¼ 1;2;…;D, and rand 0;1½ �j is a real
random number within [0,1], and jrandAf1;2;…;Dg is a randomly
generated integer, which is used to make sure that the trial vector
ui gets at least one component from the mutant vector vi. In

W.-l. Xiang et al. / Neurocomputing 158 (2015) 144–154 145



addition, the key parameter Cr is a predefined constant within the
range of [0,1], which is used to control the fraction of component
values copied from the mutant vector vi.

3.3. Selection

At the last phase, each trial vector ui is evaluated. Then a better
individual between fxi;uig is retained according to their fitness
values. Regarding a minimization problem, the chosen vector x⋆i is
given according to the following equation:

x⋆i ¼
ui if f ðuiÞo f ðxiÞ;
xi otherwise:

(
ð8Þ

where i¼ 1;2;…;Np; and f ð�Þ denotes the objective function value
of a solution, and the retained solution x⋆i represents a parent
vector for substituting the target vector xi in the next generation.

In view of the flexibility of the aforementioned mutation
scheme and crossover mode, DE can be extended to a variety of
versions. The notation DE/x/y/z was introduced by R Storn and K
Price [41] in order to classify the different variants, where “x”
specifies the vector to be mutated, “y” is the number of difference
vector used, and “z” denotes the type of crossover scheme (bin:
binomial; exp: exponential). For more details about the notation,
please refer to the literature [41]. It should be noted that the
notation “DE/x/y” is used to denote mutation strategy itself in this
paper. In this way, it can be distinguished from the complete
notation of the DE algorithm.

4. A dynamic shuffled differential evolution algorithm

4.1. Solution representation

For the clustering optimization problem, an individual is
represented by a coordinate of centroid, which is encoded by a
D-dimensional vector. Meanwhile, it depends on the number of
clusters and the number of attributes of objects in a dataset. That
is, the dimension size of optimization parameters D¼ K � d, where
the first d-dimensional vector denotes the coordinate of first
cluster center, the kth D-dimensional vector is the coordinate of
kth cluster center, and so on.

4.2. Novel initial technique

In order to improve the solution quality of initial population
and better keep the population diversity, a novel initial technique,
called the random multi-step sampling method, is proposed to
initial the first population. In the initial technique, there need K
steps to obtain an initial coordinate xi (xi ¼ ðxi;1; xi;2;…; xi;d|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl};
xi;dþ1; xi;dþ2;…; xi;2d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl};…; xi;ðK�1Þdþ1; xi;ðK�1Þdþ2;…; xi;Kd|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Þ) for each

dataset with K clusters. In addition, a mean strategy based on
median-weighted is used to collect samples from a dataset during
every initial step. The specific implementation is given in
Algorithm 1.

Algorithm 1. Initialization based on random multi-step sampling.

1: for i¼1 to Np do
2: // K denotes the number of clusters
3: for k¼1 to K do
4: Generate three integers a;b; cA ½1‥m�4aabac

randomly
// m represents the number of samples

5: Calculate the median value me of samples xa; xb; xc
6: Compute the arithmetic mean μ of samples xa; xb; xc

with their median
value me

7: Take μ as the initial center of the kth cluster
8: end for
9: end for

As shown in Algorithm 1, an arithmetic mean μ is usually used
to represent the central tendency of a group of data {x1; x2;…; xn},
and μ¼ Pn

i ¼ 1 xi=n, which is less influenced than both the median
and the mode on the aspect of statistical advantage. Thus, the
initial technique can make initial population possess better diver-
sity through a number of random samplings. But it is easier to be
influenced by some outliers [45]. To overcome the shortcoming, in
the initial strategy, three samples (xa; xb; xc) randomly chosen
together with their median are all used to compute the arithmetic
mean, which is consider as an initial cluster center. In this way, the
median of {xa; xb; xc} receives heavier weights, which is helpful to
reduce the effect of some outliers on the arithmetic mean.

4.3. Constraint handling

During the evolutionary process, some individual variables may
exceed the bound constraints, i.e., bounds of attributes of sample
in a dataset, which are denoted by [ymin

j ; ymax
j ] (j¼ 1;2;…; d), where

d is the number of properties of an object in a dataset. For the
purpose of conveniently performing a comparison between an
individual and bound constraints, xmin and xmax are used to denote
the lower bound and upper bound of an individual, respectively.
Next, they are described as follows:

xmin ¼ ½ymin
1 ; ymin

2 ; ymin
d|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}1;…; ymin

1 ; ymin
2 ; ymin

d|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}K � ð9Þ

xmax ¼ ½ymax
1 ; ymax

2 ; ymax
d|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}1;…; ymax

1 ; ymax
2 ; ymax

d|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}K � ð10Þ

Initial population Sorting by fitness

Divided into two subpopulations randomly

Merged into one poulation

Fig. 1. The idea behind DSDE.
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When a component xj of an individual x violates related
constraints, the following repairing rule is employed:

xj ¼
xmin
j þrandð0;1Þ � ðxmax

j �xmin
j Þ if xjoxmin

j ;

xmax
j �randð0;1Þ � ðxmax

j �xmin
j Þ if xj4xmax

j :

8<
: ð11Þ

where j¼ 1;2;…;K � d, and randð0;1Þ is used to generate a random
number within [0,1].

4.4. The proposed approach

In DSDE, mutation strategy DE/best/1 is employed because it
can speed up the convergence speed of differential evolution
under the guidance of best individual (base vector). At the same
time, a new produced individual is immediately compared with

the target vector in a current population, and the better individual
could be retained, which can further faster guide the correspond-
ing population evolution. However, all these may cause DSDE
premature convergence. To this end, the total population is
divided into two subpopulations according to the uniform random
distribution, which may make at least one subpopulation evolve
under the guidance of non-global best individual at the beginning
of search. In order to further improve the population diversity,
inspired by shuffled frog leap algorithm (SFLA) [38,39], two
subpopulations are merged into a total population after each
subpopulation completes an evolution process of a generation.
Then the merged population are sorted by the fitness values. Next,
the sorted population is uniformly randomly divided into two
subpopulations again. The process is called a shuffled process,
which is used to improve the population diversity and to be help-
ful to exchange/share information between two subpopulations.
The idea behind the process is given in Fig. 1.

Based on the aforementioned analysis, the detailed description
of proposed algorithm DSDE is presented in Algorithm 2.

Algorithm 2. The DSDE algorithm.

1: Set Np ¼ n1þn2 //n1 and n2 represent the size of the first sub-
population and the second sub-population, respectively

2: Initialize the population X of Np individuals using Algorithm 1
3: Compute the fitness for each individual
4: Set FEs¼Np //FEs represents the iterative variable
5: while FEsrmaxFEs do
6: Sort the population X
7: Subdivide the population X into two sub-populations X0

and X″ randomly

Table 1
The summary of test datasets used in experiments.

Datasets K d Number of data objects Description

Art1 4 2 600(150,150,150,150) Artificial data
Art2 5 3 250(50,50,50,50,50) Artificial data
Iris 3 4 150(50,50,50) Fisher's iris data
Wine 3 13 178(59,71,48) Wine quality data
Glass 6 9 214(70,76,17,13,9,29) Glass identification data
Cancer 2 9 683(444,239) Wisconsin breast cancer
CMC 3 9 1473(629,334,510) Contraceptive method choice
Vowel 6 3 871(72,89,172,151,207,180) Indian Telugu vowel
Crude Oil 3 5 56(7,11,38) Crude Oil quality data
Thyroid 3 5 215(150,35,30) Thyroid gland data
bupaLD 2 6 345(200,145) Liver disorders

Table 2
Comparison of objective values among DE/rand/1/bin, DE/best/1/bin and DSDE on the 11 datasets.

Data sets Methods Best Worst Median Mean Std. Sig.

Art1 DE/rand/1/bin 562.30 651.53 596.91 597.54 23.3496 a

DE/best/1/bin 535.17 535.17 535.17 535.17 0 b

DSDE 535.17 535.17 535.17 535.17 0
Art2 DE/rand/1/bin 2152.85 2869.66 2674.61 2619.72 188.5628 a

DE/best/1/bin 1731.92 2367.46 1733.37 1784.89 147.2191 a

DSDE 1731.88 1731.88 1731.88 1731.88 0
Iris DE/rand/1/bin 97.54 107.42 102.01 101.29 2.6852 a

DE/best/1/bin 96.65 97.31 96.65 96.70 0.1485 a

DSDE 96.65 96.65 96.65 96.65 0
Wine DE/rand/1/bin 16,306.87 16,401.15 16,355.28 16,351.61 27.8355 a

DE/best/1/bin 16,294.63 16,313.26 16,300.18 16,302.01 4.9672 a

DSDE 16,292.18 16,292.66 16,292.18 16,292.39 0.2450
Glass DE/rand/1/bin 293.72 347.33 313.51 315.37 15.3437 a

DE/best/1/bin 246.99 290.18 265.24 266.53 12.4545 a

DSDE 210.05 215.64 213.00 212.73 1.6796
Cancer DE/rand/1/bin 2994.45 3241.09 3048.93 3062.58 56.5500 a

DE/best/1/bin 2964.61 3005.07 2969.03 2974.10 10.9925 a

DSDE 2964.38 2964.38 2964.38 2964.38 0
CMC DE/rand/1/bin 5590.99 5915.62 5798.70 5790.81 76.0309 a

DE/best/1/bin 5547.54 5702.15 5609.31 5612.61 45.3701 a

DSDE 5532.18 5532.18 5532.18 5532.18 0
Vowel DE/rand/1/bin 172,623.36 186,531.43 179,915.92 179,792.69 344.5600 a

DE/best/1/bin 149,011.17 157,749.67 150,795.00 151,080.71 227.8969 a

DSDE 148,967.24 150,138.92 149,062.41 149,193.97 373.4470
Crude Oil DE/rand/1/bin 278.44 287.32 280.32 282.14 3.4532 a

DE/best/1/bin 277.21 278.05 277.42 277.51 0.2712 a

DSDE 277.21 277.30 277.21 277.22 0.0329
Thyroid DE/rand/1/bin 1924.74 2173.05 2034.52 2043.18 75.4963 a

DE/best/1/bin 1868.60 1986.21 1920.82 1919.87 29.9104 a

DSDE 1866.46 1895.99 1868.29 1874.00 11.7699
bupaLD DE/rand/1/bin 9852.60 9864.31 9856.38 9857.12 2.8990 a

DE/best/1/bin 9851.71 9907.75 9852.48 9857.02 12.6783 a

DSDE 9851.71 9852.07 9851.71 9851.73 0.0782

a DSDE is better than its competitor by the Wilcoxon's rank sum test at α¼0.05.
b There is no significant difference between DSDE and its competitor.
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// X0 ¼ fx01; x02;…; x0n1 g, X
″ ¼ fx″1; x″2;…; x″n2

g
8: //The evolving process of subpopulation X0

9: for i¼1 to n1 do
10: Choose the best individual in the subpopulation X0,

and its index refers to as pbest
11: Produce two integers a; bA ½1‥n1� randomly and

aaba i
12: Generate noise vector v by using

v¼ x0pbestþF � ðx0a�x0bÞ
13: Perform constraint handling operation
14: Generate trial vector u by using binary crossover

operation
15: Compute the objective f(u) of temporary individual u
16: Set FEs¼ FEsþ1
17: if f ðuÞo f ðx0iÞ then
18: Replace the target vector x0i with trial vector u

immediately
19: end if

20: end for
21: //The evolving process of subpopulation X″

22: for i¼1 to n2 do
23: Choose the best individual in the subpopulation

X″, and its index refers to as pbest
24: Produce two integers a; bA ½1‥n2� randomly and

aaba i
25: Generate noise vector v by using

v¼ x″pbestþF � ðx″a�x″bÞ
26: Perform constraint handling operation

27: Generate trial vector u by using binary crossover
operation

28: Calculate the objective f(u) of temporary individual u
29: Set FEs¼ FEsþ1
30: if f ðuÞo f ðx″i Þ then
31: Replace the target vector x″i with trial vector u

immediately
32: end if
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Fig. 2. Convergence performance of DE/rand/1/bin, DE/best/1/bin and DSDE on the nine benchmark datasets. (a) Iris, (b) 1 Wine, (c) Glass, (d) Cancer, (e) CMC, (f) Vowel,
(g) Crude Oil, (h) Thyroid, (i) bupaLD.
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33: end for
34: Merge the two sub-populations X0 and X″ into a

population X
35: Record the best solution achieved so far in the current

population X
36: end while

Last but not least, it should be noticed that Eq. (2) is considered
as the objective function of DSDE. In addition, the objective
function values are also directly used to compare the superiority
of two individuals in DSDE.

5. Experimental study and discussion

5.1. Benchmark data sets and parameter settings

In order to validate the performance of proposed algorithm DSDE,
we construct a testbed composed of 11 well-known datasets, which
are widely used in a variety of researches [7,11,17,22,35,36,40]. These
benchmark datasets are listed briefly in Table 1, where the number of
clusters of each dataset is denoted by K, and d specifies the number
of attributes of each dataset. In addition, all datasets except Art1 &
Art2 are real life datasets. Art1 and Art2 are randomly generated
according to a bivariate normal distribution and an uniform distribu-
tion, respectively [36]. In specific, Classes in the artificial dataset Art1
are distributed according to N2ðμ;ΣÞ, where μ¼ μi;μi

� �0 is the mean

vector, and Σ ¼ 0:50 0:05
0:05 0:50

� �
is the covariance matrix. In reality,

μ1 ¼ �3, μ2 ¼ 0, μ3 ¼ 3, and μ4 ¼ 6 are used to produce four
independent clusters, respectively. The artificial dataset Art2 contains
250 objects with three features and five clusters, and every feature of
these clusters is distributed according to five independent uniform
distributions with ranges of [85,100], [70,85], [55,70], [40,55] and
[25,40], respectively.

For a fair comparison, the maximum number of fitness function
evaluations (maxFEs) is set to 1e4 as recommended in Jiang et al.
[11] in all experiments. In addition, other parameters for DE/rand/
1/bin, DE/best/1/bin and DSDE are set as follows:

Table 3
Comparison of clustering accuracy among DE/rand/1/bin, DE/best/1/bin and DSDE on the 11 datasets.

Datasets Methods Best% Worst% Median% Mean% Std. Sig.

Art1 DE/rand/1/bin 100.00 99.00 99.66 99.60 0.0023 a

DE/best/1/bin 99.83 99.66 99.83 99.78 7.00e�004 b

DSDE 99.83 99.66 99.83 99.79 7.00e�004
Art2 DE/rand/1/bin 100.00 77.60 95.20 92.38 0.0805 a

DE/best/1/bin 100.00 80.00 100.00 98.96 0.0446 b

DSDE 100.00 100.00 100.00 100.00 0
Iris DE/rand/1/bin 92.00 88.66 90.00 89.90 0.0084 b

DE/best/1/bin 92.66 89.33 90.00 90.00 0.0068 b

DSDE 90.00 90.00 90.00 90.00 0
Wine DE/rand/1/bin 72.47 70.78 71.34 71.40 0.0060 b

DE/best/1/bin 71.91 70.78 71.34 71.26 0.0045 a

DSDE 71.91 71.34 71.91 71.65 0.0028
Glass DE/rand/1/bin 51.40 45.32 49.53 49.50 0.0138 a

DE/best/1/bin 54.67 48.13 50.46 50.51 0.0148 a

DSDE 56.07 48.13 54.43 53.48 0.0283
Cancer DE/rand/1/bin 96.63 95.31 95.90 96.00 0.0041 a

DE/best/1/bin 96.63 95.90 96.48 96.37 0.0021 b

DSDE 96.486 96.486 96.486 96.486 0
CMC DE/rand/1/bin 38.83 35.77 38.32 38.20 0.0067 b

DE/best/1/bin 38.49 37.13 37.84 37.82 0.0043 a

DSDE 38.49 38.49 38.49 38.49 0
Vowel DE/rand/1/bin 62.91 40.52 51.83 52.00 0.0679 b

DE/best/1/bin 60.16 49.48 56.31 55.31 0.0334 b

DSDE 57.97 53.50 55.62 56.21 0.0122
Crude Oil DE/rand/1/bin 69.64 62.50 67.85 67.05 0.0242 b

DE/best/1/bin 69.64 64.28 67.85 67.50 0.0148 b

DSDE 67.85 66.07 67.85 67.58 0.0065
Thyroid DE/rand/1/bin 83.25 46.04 66.04 65.97 0.1186 b

DE/best/1/bin 82.32 44.18 63.72 61.07 0.1099 b

DSDE 65.58 58.14 62.79 62.14 0.0257
bupaLD DE/rand/1/bin 51.01 50.43 50.58 50.62 0.0021 c

DE/best/1/bin 51.01 50.43 51.01 50.79 0.0028 c

DSDE 51.01 50.43 50.43 50.46 0.0013

a DSDE is better than its competitor by the Wilcoxon's rank sum test at α¼0.05.
b There is no significant difference between DSDE and its competitor.
c DSDE is worse than its competitor.

Table 4
The best clustering center on the data sets Cancer and bupaLD.

Data sets Center1 Center2

Cancer 7.117120827982673 2.889329284178662
6.640969453546074 1.127768891100870
6.625393415447806 1.200659417770133
5.614330131509711 1.164149874300891
5.240748395467229 1.993402097654656
8.100901186763572 1.121191011120431
6.078219125594872 2.005409693809643
6.021873351600457 1.101323727152610
2.325717925036817 1.031605044353600

bupaLD 90.943297479406027 89.895305474079862
74.865755013951301 66.422217791442719
48.894039158789127 23.922375125224157
33.725767934385857 21.305797612097820
90.828560716481320 21.882825135197557
5.660648641397779 2.806378448273524
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1. For both DE/rand/1/bin and DE/best/1/bin, population size is
set to 100 [42,49,51], scale factor F takes 0.5 [41,42,51], and
crossover rate Cr is set to 0.9 [41,42,47-49,51].

2. For DSDE, there are two sub-populations, and each subpopulation
size is set to 50. More over, mutation strategy DE/best/1 is used
during the evolution process of each subpopulation. Accordingly,
parameter settings of F¼0.5 and Cr¼0.9 are also used here.

5.2. Comparison among DE/rand/1/bin, DE/best/1/bin and DSDE

In order to evaluate the performance of DSDE, it is first compared
with both DE/rand/1/bin and DE/best/1/bin. In the experiments, all
approaches were run 20 times independently for each of the datasets.

The results are presented in Table 2 in terms of the best, worst,
median, mean and standard deviation (Std.) of the solutions obtained
by each algorithm. In the eighth column of Table 2, the statistical
significance level of the difference between the corresponding
algorithm and the DSDE algorithm is also reported. That is, Wilcox-
on's rank sum test [46] at a 0.05 significance level was conducted on
the experiments. And then convergence curves of DE/rand/1/bin, DE/
best/1/bin and DSDE are shown in Fig. 2 in order to show the
convergence speed of DSDE more clearly. Last, the best clustering
centers achieved by DSDE are also reported in Tables 4–6 in order to
show the feasibility of results given in Table 2. The clustering centers
can be used to validate the results in Table 2 by assigning any dataset
to its corresponding clustering centers and then reaching a corre-
sponding value given in Table 2.

Table 5
The best clustering center on the data sets Iris, Wine, CMC, crude Oil and Thyroid.

Data sets Center1 Center2 Center3

Iris 5.012138686242361 6.733346741783071 5.934328024253308
3.403101545488279 3.067850110992885 2.797799201326991
1.471639046743056 5.630075113481303 4.417893164608254
0.235406803776499 2.106798306955245 1.417266800307920

Wine 12.525522842313734 13.741668297437199 12.809976721739549
2.322188155690992 1.862786379061949 2.542091132462463
2.331462864620108 2.433160576176573 2.382322145893643
21.325332639408678 16.921377235895356 19.506739284662256
92.531514587541551 105.2804479073058 98.940794820320576
2.036446041634795 2.860096411366974 2.063455772497936
1.779209260688906 3.064716833165437 1.493369791970438
0.409123596461618 0.293859784234457 0.427509368664548
1.439367350194149 2.016455525973532 1.418263313904469
4.355255798069449 5.698798165869451 5.780481715801642
0.950659733613235 1.077965919011581 0.888392622707915
2.461840514497851 3.024449089895384 2.222833830448662
463.5998692309975 1137.272816317636 686.9668919771109

CMC 24.416794308274717 33.495271621709925 43.636950404337945
3.042766122008858 3.133610566824130 3.004432394841012
3.042766122008858 3.133610566824130 3.004432394841012
3.512958106290536 3.554263665123835 3.454610437118063
1.791987466310359 3.649066988852982 4.584795342459174
0.928195507675319 0.789971345224440 0.795493483772608
0.793959532247462 0.696752112246018 0.763680557832968
2.302600209819029 2.098409830316567 1.822493028365769
2.972493029384379 3.285850583844533 3.432925909755034
0.035918936449945 0.059050743756431 0.089729012319805

Crude
Oil

7.952803882991137 5.031403530240487 4.141865809296858

17.818144669475657 32.108613664046359 46.117594289171116
0.320997533123584 0.441579794762027 0.131798767444252
4.372846935730347 5.762483664705491 6.731073351909815
6.506980467396309 5.585603295576902 8.333174462132616

Thyroid 84.729560668885085 117.8168622827352 105.1608439377734
18.781624089893459 9.395263961275477 9.182735419555405
4.796517058239326 1.822031207306441 1.685517120514144
0.972447388755393 1.995958984595695 1.233791319891045
�0.021251732599964 3.708135800679412 1.881579623154738

Table 6
The best clustering center on the data sets Glass and Vowel.

Data sets Center1 Center2 Center3 Center4 Center5 Center6

Glass 1.52627 1.52279 1.51516 1.52028 1.51978 1.51773
13.01213 13.32149 12.85517 13.09923 13.80574 14.64658
0.00188 3.58811 3.46384 0.23673 3.53328 0.06954
3.02671 1.41896 1.32193 1.42930 0.94668 2.21689
70.64063 72.66511 73.01082 72.68251 71.84998 73.25901
6.19624 0.57449 0.58887 0.31357 0.16642 0.04435
6.94893 8.20457 8.55687 11.96939 9.51825 8.70311
0.00170 0.00361 0.00234 0.04167 0.04035 1.00826
0.00938 0.03690 0.06990 0.06161 0.05065 0.01173

Vowel 357.26095 407.89375 375.45287 623.71776 439.24162 506.98782
2291.43650 1018.05281 2149.40168 1309.59345 987.68666 1839.66010
2977.39342 2317.82599 2678.44338 2333.45457 2665.47405 2556.19804
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From the results given in Table 2, we can see that the results
obtained by DSDE are significantly better than both DE/rand/1/bin and
DE/best/1/bin for all the test datasets except for Art1. In particular, the
mean values obtained by DSDE are better than those obtained by other
two algorithms on almost all the test datasets. Meantime, the standard
deviation values achieved by DSDE are also smaller than those found
by other two algorithms, which suggests that DSDE is more effective
and robust than DE/rand/1/bin and DE/best/1/bin on all the datasets. In
a word, DE/best/1/bin is better than DE/rand/1/bin on all the datasets.
However, DSDE is much better than DE/best/1/bin on almost all the
datasets. All these superiorities of DSDE can also be seen from Fig. 2
and the eighth column of Table 2. Namely, the improved performance
of our presented algorithm DSDE is very clear for data clustering.

In addition, the best, worst, median, mean and standard
deviation of clustering accuracies obtained by the three algorithms
for the 11 datasets are summarized in Table 3. We also report the
statistical significance level of the difference of the clustering
accuracy obtained by the corresponding algorithm and the pro-
posed algorithm in the eighth column of Table 3. It can be seen
that the DSDE algorithm had the best average clustering accuracy
on nine test datasets, i.e., Art1, Art2, Iris, Wine, Glass, Cancer, CMC,
Vowel and Crude Oil datasets. On the Thyroid dataset, the
performance order of the algorithms is DE/rand/1/bin 4 DSDE
4 DE/best/1/bin in terms of the mean and standard deviation of
clustering accuracies. On the bupaLD dataset, the mean clustering
accuracy found by DSDE is slightly inferior to those found by other

two algorithms. It should be noted that the best clustering
accuracy obtained by DSDE is the same as that found by DE/
best/1/bin on the bupaLD dataset. According to the eighth column
of Table 3, i.e, the statistical significance test results, it can be
found that DSDE is better than or at least equal to the other two
algorithms on almost all the test datasets. Namely, the DSDE is
worse than DE/rand/1/bin and DE/best/1/bin only on the dataset
bupaLD. On the whole, the performance of DSDE is more better
and stable than those of other two algorithms.

In order to further show the effectiveness of the DSDE algo-
rithm, we visually illustrate the clustering results obtained by the
three algorithms (DE/rand/1/bin, DE/best/1/bin and DSDE) on the
two artificial datasets Art1 and Art2. The related results are given
in Figs. 3 and 4, respectively.

The visual clustering results together with the original posi-
tions of data set Art1 are shown in Fig. 3. Specifically, the dataset
Art1 is illustrated in Fig. 3(a), and the clustering results obtained
by DSDE are illustrated in Fig. 3(b), and the clustering results
searched by DE/rand/1/bin are illustrated in Fig. 3(c), and the
clustering results found by DE/best/1/bin are illustrated in
Fig. 3(d). It can be observed that two objects are misplaced by
DSDE and DE/best/1/bin. However, six objects are misplaced by
DE/rand/1/bin. Therefore, DSDE is better than or equal to the other
two competitors on the artificial dataset Art1.

For artificial dataset Art2, it is illustrated in Fig. 4(a). The
clustering results obtained by DSDE are illustrated in Fig. 4(b),

−4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

8

x1

x2

The original positions for artificial dataset Art1

−4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

8

x1

x2

The worst clustering result obtaind by DSDE on the Art1

−4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

8

x1

x2

The worst clustering result obtaind by DE/rand/1/bin on the Art1

−4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

8

x1

x2

The worst clustering result obtaind by DE/best/1/bin on the Art1

Fig. 3. The worst clustering results obtained by DE/rand/1/bin, DE/best/1/bin and DSDE on the artificial dataset Art1.
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which is the same as shown in Fig. 4(a). This means that the DSDE
algorithm exactly clusters the dataset Art2. The clustering results
obtained by DE/rand/1/bin are illustrated in Fig. 4(c), where the
bigger symbols represent those misplaced points. Thus, the cluster-
ing performance of DE/rand/1/bin is very bad on the dataset Art2
and its clustering accuracy is 77.60%. From Fig. 4(d), it can be seen
that the clustering effect of DE/best/1/bin is slightly better than that
of DE/rand/1/bin, which can also be found according to the worst
clustering accuracy of Table 3. In general, the DSDE is superior to
both DE/rand/1/bin and DE/best/1/bin on the Art2.

According to the analyses mentioned above, it can be con-
cluded that the performance of DSDE is significantly enhanced
relative to the canonical differential evolution.

5.3. Comparison between DSDE and other population based
algorithms

In order to further testify the performance of DSDE, it is compared
with other four well known algorithms, such as ACO, ABC, PSO, and
PSOAG. Among them, PSOAG is a more recent algorithm, which was
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Fig. 4. The worst clustering results obtained by DE/rand/1/bin, DE/best/1/bin and DSDE on the artificial dataset Art2.

Table 7
Comparison between DSDE and other population-based algorithms over 20 independent runs on the seven data sets.

Data sets Indexes ACO ABC PSO PSOAG DSDE

Iris Mean 100.67 101.00 104.45 96.97 96.65
Std. 1.58 1.43 4.77 0.35 0

Wine Mean 16,300.71 16,506.75 16,303.16 16,296.30 16,292.39
Std. 10.86 131.42 4.82 1.69 0.24

Glass Mean 226.41 297.10 324.31 244.99 212.73
Std. 4.64 9.15 12.63 10.41 1.67

Cancer Mean 3376.20 3102.63 4024.79 2984.24 2964.38
Std. 42.60 68.00 270.67 17.63 0

CMC Mean 6151.35 5649.94 5750.07 5559.98 5532.18
Std. 63.22 54.01 59.56 31.97 0

Vowel Mean 170,849.03 160,347.29 154,017.66 149,734.40 149,193.97
Std. 2055.93 3275.35 3722.14 988.20 373. 44

Thyroid Mean 1950.37 2111.39 2369.90 1902.77 1874.00
Std. 15.16 94.36 85.11 16.69 11.76

Bold entities mean the best results.
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proposed by Jiang et al. [11] in 2013. For a reliable and fair comparison,
the parametermaxFEs is set to 1e4, which is the same as in Jiang et al.
[11]. The related comparison results are presented in Tables 7 and 8,
where all results reported except for those obtained by DSDE are
directly gained from Jiang et al. [11].

From Table 7, it can be observed that PSOAG is much better
than ACO, ABC and PSO on almost all the cases. However, DSDE is
obviously better than other four algorithms including PSOAG in all
cases, which further verifies that our modifications to the original
DE take effect. In other words, DSDE is an effective algorithm and
it can be considered as a very good alternative for data clustering.

From Table 8, it can be found that the DSDE algorithm had the best
mean accuracy on four of the seven datasets. The PSOAG algorithm
obtained the best accuracy on two of the seven datasets. The ABC
algorithm provided the higher accuracy on only one of seven datasets, i.
e., the dataset CMC. The PSO algorithm also outperformed the DSDE
algorithm on datasets CMC and Thyroid. Yet the ACO algorithm is
inferior to the DSDE algorithm on all the seven datasets. Although DSDE
outperformed the other four algorithms on the seven datasets in terms
of objective function values as shown in Table 7, it failed to gain the
same advantage on the seven datasets in terms of the clustering
accuracy of Table 8. This is because that there is no absolute correlation
between the objective function and the clustering accuracy [11]. This
interesting phenomenon is also happened and reported in the literature
[11]. Therefore, finding a good objective function is a hard and good
way to improve the clustering accuracy of evolutionary algorithms.

5.4. The effect of the sorting operation

In order to further testify the effectiveness of the sorting operation of
shuffled scheme, another comparison is done. For convenience, the DSDE
without sorting operation is refer to as DSDE-II. For the sake of brevity,
we take the sample dataset “Glass” as an example due to the complexity
of the Glass dataset. The rest of parameter settings are also the same as
those mentioned before. The comparison results are listed in Table 9.

From Table 9, it can be seen that the best result obtained by DSDE
is slightly better than that found by DSDE-II on the dataset Glass.
Especially, the worst result obtained by DSDE is obviously better than
that found by DSDE-II. What is more, the mean result and its standard
deviation value obtained by DSDE are also superior to those of DSDE-II.
Here, only the median result obtained by DSDE is a little inferior to
that found by DSDE-II. In a word, DSDE is better than DSDE-II. Namely,
the sorting operation introduced into DSDE makes sense.

6. Conclusion

In this paper, we develop an enhanced differential evolution
algorithm named as DSDE for data clustering. In DSDE, a novel
initial technique which partly reduces the randomness in contrast
with the k-means algorithm, a shuffled scheme for a total popula-
tion, together with a double subpopulations scheme are presented
and integrated. At the same time, mutation strategy DE/best/1 used
in two subpopulations can effectively take use of the guidance
information of the best individual. Double populations mechanism
is employed to improve the population diversity and to avoid the
premature convergence caused by the mutation strategy DE/best/1.
At the same time, the sorting scheme and shuffled scheme inspired
by SFLA further enhance the effect of improving the population
diversity. Overall, the exploration ability and exploitation ability of
DSDE are well balanced in the work. Then, experimental results
tested on nine usually used datasets show that DSDE outperforms
both DE/rand/1/bin and DE/best/1/bin in terms of their objective
values. Subsequently, DSDE is compared with other four well-
known algorithm including the recent algorithm PSOAG on seven
datasets once more. At last, the related results also demonstrate its
superiority over ACO, ABC, PSO and PSOAG. All these show that
DSDE is a competitive approach for data clustering. Furthermore,
we will focus on the theoretical analysis of the proposed algorithm
complexity and convergence performance in the future work.
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Cancer Mean% 78.23 95.51 94.36 96.31 96.486
Std. 1.13 0.55 1.61 0.20 0

CMC Mean% 36.96 40.10 39.80 39.87 38.49
Std. 0.77 0.70 0.53 0.30 0

Vowel Mean% 36.50 53.59 54.05 51.75 56.21
Std. 1.78 4.75 4.01 4.25 0.0122

Thyroid Mean% 51.93 60.67 62.93 74.37 62.14
Std. 2.37 10.55 3.63 10.95 0.0257

Bold entities mean the best results.

Table 9
Comparison of objective values between DSDE-II and DSDE on the dataset Glass

Dataset Index DSDE-II DSDE

Glass Best 210.22 210.05
Worst 222.19 215.64
Median 212.95 213.00
Mean 213.20 212.73
Std. 2.96 1.6796
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