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Abstract 
Scheduling plays an important role in many different service industries. In this paper we provide an 

overview of some of the more important scheduling problems that appear in the various service 
industries. We focus on the formulations of such problems as well as on the techniques used for 
solving those problems. We consider five areas of scheduling in service industries, namely (i) project 
scheduling, (ii) workforce scheduling, (iii) timetabling, reservations, and appointments, (iv) 
transportation scheduling, and (v) scheduling in entertainment. The first two areas are fairly general 
and have applications in many different service industries. The third, fourth and fifth areas are more 
related to some very specific service industries, namely the hospitality and health care industries, the 
transportation industries (of passengers as well as of cargo), and the entertainment industries. In our 
conclusion section we discuss the similarities and the differences between the problem formulations 
and solution techniques used in the various different industries and we also discuss the design of the 
decision support systems that have been developed for scheduling in the service industries. 
 

1. Introduction 
Scheduling applications in the service 

industries are ubiquitous. Due to the inherent 
non-stationarity of service businesses, 
scheduling is a very important aspect of 
management in a variety of service industries, 
including health care, hospitality, transportation, 
and entertainment industries. This paper presents 
a tutorial of some of the major scheduling 
application areas in the service industries. It 
focuses, in particular, on three aspects of 

scheduling in the service industries, namely (i) 
the most basic scheduling paradigms relevant to 
the service industries, (ii) optimization 
techniques and/or heuristics that are used in 
practice, and (iii) examples of specific real world 
applications. 

One can make a distinction between static 
scheduling and dynamic scheduling. In static 
scheduling applications, one would not expect a 
schedule to change much over time; a schedule 
is typically cast in stone. A typical example of 
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such schedule is a quarterly flight schedule of an 
airline. Since such a static schedule is not 
expected to undergo many changes, the amount 
of computer time allocated for finding an 
optimal solution may be substantial; such a 
schedule typically does not have to be generated 
in real time. In dynamic scheduling applications, 
on the other hand, one would expect a schedule 
to change frequently. When schedules have to be 
generated and regenerated regularly, the 
optimization may have to be done in real time. 
Because of the many changes that are then 
expected, one important characteristic of a 
schedule is its robustness. An example of a 
dynamic scheduling application can be a 
resource constrained project at a consulting firm. 
In practice, dynamic scheduling is often done 
manually, rather than through a decision support 
system. 

It has been the experience that the analysis of 
a dynamic scheduling problem is often harder 
than the analysis of its corresponding static 
scheduling counterpart. However, in the 
development of a procedure for a dynamic 
scheduling problem it is always helpful to know 
which procedure(s) are most appropriate for the 
scheduling of its static counterpart. 

In this paper we provide an overview of five 
different scheduling areas in service industries. 
The first two areas are fairly general and have 
applications in many different service industries, 
namely 

(i) project scheduling, and 
(ii) workforce scheduling. 
The third, fourth and fifth areas focus on 

specific service industries, namely 
(iii) hospitality and health care industries, 
(iv) transportation industries, and 

(v) professional sports and entertainment. 
The first area, project scheduling, has many 

applications in management consulting, 
accounting and auditing, as well as in systems 
implementations. The second area, workforce 
scheduling, consists of two parts, one being shift 
scheduling (important in call centers) and the 
other being crew scheduling (important in 
transportation). The third area considers 
timetabling, reservations, and appointments. The 
corresponding section consists of three 
subsections. The first subsection goes into the 
basics of timetabling, which has many 
applications in the hospitality industries as well 
as in the field of education. The second 
subsection covers interval scheduling and 
reservation systems modeling, which are closely 
related to timetabling. The last subsection 
discusses a more special case of timetabling, 
namely appointment scheduling, which is very 
important in health care. The fourth area deals 
with transportation scheduling. The 
corresponding section consists of four 
subsections. The first one focuses on urban 
transit scheduling, the second one on maritime 
scheduling, the third one on aviation scheduling 
and the last one on emergency operations 
scheduling. The fifth and last area covers 
scheduling in professional sports and 
entertainment. This section consists of two 
subsections. The first one focuses on tournament 
scheduling in professional sports and the second 
one on network broadcast scheduling. In the 
very last section, we present our conclusions, 
discuss the design and development of decision 
support systems, and make suggestions for 
future research. 

There are other scheduling areas in service 
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industries that are not covered in this tutorial. 
However, the areas that are covered seem to be 
very representative of common scheduling 
problems in service industries. The goal of this 
paper is to provide a rudimentary overview of 
scheduling applications and the methods and 
techniques being used in the service industries. 
Since it is more a tutorial rather than a detailed 
survey of the entire literature, the reference list 
is not exhaustive. There are in the literature 
many more papers on each topic we discuss.  

2. Project Scheduling 
Examples of project scheduling are 

ubiquitous in the service industries; they include 
consulting projects, systems installation projects, 
maintenance and repair projects, and so on. 
Consulting projects may include also the annual 
auditing processes that must be done at every 
public company by independent accounting 
(CPA) firms. A systems installation project may 
involve the installation of a large computer 
system at a corporation or the implementation of 
a large ERP system; these types of projects can 
take several years. A maintenance and repair 
project may be the annual overhaul of a major 
manufacturing or power generation facility; such 
a facility may be forced to stop its production in 
order for the maintenance to take place. 

Project scheduling in service industries tend 
to be intrinsically very different from project 
scheduling in manufacturing industries. 
Installing a large ERP system at a major 
company does not have much in common with 
the building of an aircraft carrier or a nuclear 
submarine. 

In this section we discuss the basics of 
project scheduling. The first subsection focuses 

mainly on the precedence constraints imposed 
on the activities and the resulting critical paths. 
The second subsection considers more general 
project scheduling problems that have, in 
addition to the precedence constraints, resource 
constraints. 

2.1 Precedence Constraints and Critical 
Paths 

A generic project scheduling problem can be 
described as follows: consider the scheduling of 
a number of jobs or activities that are subject to 
precedence constraints. A job or activity can 
start only when all its predecessors have been 
completed. The objective is to minimize the total 
project completion time while adhering to the 
precedence constraints. Such problem is 
considered a standard project scheduling 
problem. 

Research in project scheduling started in the 
1950s. These efforts resulted in the classical 
technique usually referred to as the Critical Path 
Method (CPM). There is an extensive literature, 
spanning decades, in the field of project 
scheduling and in the Critical Path Method; see, 
for example, Walker and Sayer (1959), Moder 
and Philips (1970), Wiest and Levy (1977), and 
Demeulemeester and Herroelen (2002). 

Since, especially in service industries, 
activity durations are often random, a fair 
amount of effort has been put into the 
development of critical path techniques for 
random durations; one such technique is known 
as the Project Evaluation and Review Technique 
(PERT), see the Department of the Navy Report 
“PERT” (1958), Fulkerson (1962), Elmaghraby 
(1967), and Sasieni (1986). 

Another version of the project scheduling 
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problem assumes that the durations of activities 
can be determined in advance by the project 
manager. A project manager may have some 
control over the durations of different activities 
by allocating selectively more resources (e.g., 
people) to some activities. A project may have a 
deadline and a completion after the deadline 
may entail a penalty; the project manager, 
therefore, has to analyze the trade-off between 
the penalties incurred by completing the project 
late and the additional costs incurred by 
shortening the durations of selected activities by 
allocating more resources, see Talbot (1982). 
This process is in the literature typically referred 
to as crashing. 

2.2 Project Scheduling with Resource 
Constraints 

Another more general version of the basic 
project scheduling problem assumes that a job’s 
processing requires additional resources of 
different types, say some special equipment or 
specific experts. Consider, for example, a 
workforce that consists of various different pools 
of people with each pool having of a fixed 
number of people with a specific skill set. 
Because of the pools’ limitations, it may 
sometimes occur that two jobs cannot be 
processed at the same time, even though both 
are allowed to start as far as the precedence 
constraints are concerned. The total number of 
people the two jobs require from a given pool 
may be larger than the number available in that 
pool, making it impossible to process two jobs at 
the same time. This type of problem is typically 
referred to as project scheduling with resource 
constraints. Resource constraints typically make 
project scheduling problems considerably harder. 

A significant amount of research in the past has 
focused on project scheduling subject to 
resource constraints, see Patterson (1984), 
Blazewicz et al. (1986), Kolish (1995), Brucker 
et al. (1999), and Neumann et al. (2001). 

The basic project scheduling problem with 
precedence constraints but without any resource 
constraints is very easy from a computational 
point of view. Optimal solutions can be found 
with very little computational effort. However, 
project scheduling problems with resource 
constraints are typically strongly NP-Hard. 

A project scheduling problem subject to 
resource constraints typically can be formulated 
as a Mixed Integer Program (MIP). In order to 
formulate this problem as an integer program, 
assume that all processing times are fixed and 
integer. Let W



 denote the total number of 
people available in pool   and let jW



 denote 
the number of people job j  requires from pool
  for its processing. Let A  denote the set of 
precedence constraints. Introduce a dummy job 

1n +  with zero processing time. Job 1n +  
succeeds all other jobs, i.e., all jobs without 
successors have an arc emanating to job 1n + . 
Let jtx  denote a 0 1−  variable that assumes 
the value 1 if job j  is completed exactly at 
time t  and the value 0 otherwise. So the 
number of operators job j  needs from pool   
in the interval [ 1, ]t t−  is  

1jt p

j ju
u t

W x
+ −

=
∑



. 

Let H  denote an upper bound on the 
makespan. A simple, but not very tight, bound 
can be obtained by setting 



Michael Pinedo et al.: Scheduling in the Service Industries: An Overview 
J Syst Sci Syst Eng  5 

1

n

j
j

H p
=

= ∑ . 

So the completion time of job j  can be 
expressed as  

1
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And the makespan as  
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An integer program can now be formulated 
as follows: 
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H

jt
t

x j n
=

= =∑  . 

The objective of the integer program is to 
minimize the makespan. The first set of 
constraints ensures that the precedence 
constraints are enforced, i.e., if job j  is 
followed by job k , then the completion time of 
job k  has to be greater than or equal to the 
completion of job j  plus kp . The second set 
of constraints ensures that the total demand for 
pool   at time  t does not surpass the 
availability of pool  . The third set of 
constraints ensures that each job is processed. 

Since this integer program is very hard to 
solve when the number of jobs is large and the 
time horizon is long, it is typically tackled with 
heuristics. It turns out that even special cases of 
this problem are quite hard. However, for a 
number of important special cases heuristics 

have been developed that have been proven to 
be quite effective. 

Over the last decade research in project 
scheduling has started to focus on various types 
of resource constraints. Traditional resources 
may be referred to as “renewable”, since they 
will always be available. A renewable resource 
could be a person, i.e., a specific expert, who is 
on the payroll of a company. After this person 
has lended his hand in the completion of one 
activity and the activity has been completed, he 
could be assigned to another activity. However, 
other resources may be referred to as 
“nonrenewable”. Such resources would actually 
be consumed and a certain supply was available 
at the outset. Of late, research has started to 
focus on project scheduling with renewable as 
well as nonrenewable resources. A specific 
example of a nonrenewable resource is working 
capital. Such nonrenewable resource constraints 
are basically equivalent to budgetary constraints. 

In particular, project scheduling subject to 
resource constraints with random activity 
durations has not received much research 
attention in the past. This particular area seems 
to be in need of new research ideas. 

3. Workforce Scheduling 
Workforce scheduling is a very important 

aspect of many service industries, since 
schedules have to be created in such a way that 
they will be able to deal with fluctuating and 
random demand. The application areas include 
nurse scheduling in hospitals, operator 
scheduling in call centers, and so on. Clearly, an 
enormous amount of research has been done on 
personnel scheduling, resulting in a host of 
survey papers and books; see, for example, Tien 

 



Michael Pinedo et al.: Scheduling in the Service Industries: An Overview 
6  J Syst Sci Syst Eng 

and Kamiyama (1982), Burgess and Busby 
(1992), Nanda and Browne (1992), and Burke et 
al. (2004). This section consists of two 
subsections: the first one deals with shift 
scheduling, which is very important in call 
centers, and the second one deals with crew 
scheduling, which is very important in 
transportation industries. 

3.1 Shift Scheduling 
In this subsection we consider personnel 

scheduling problems with cycles that are fixed in 
advance. In certain settings the cycle may be a 
single day, while in others it may be a week or a 
number of weeks. Each work assignment pattern 
within a cycle has its own cost and the objective 
is to minimize the total cost. 

The problem can be formulated as follows: A 
predetermined cycle consists of m time intervals 
or periods. The lengths of the periods do not 
necessarily have to be identical. During period 
i , 1, ,i m=  , the presence of ib  personnel is 
required. The number ib  is, of course, an 
integer. There are n different shift patterns and 
each employee is assigned to one and only one 
pattern. Shift pattern j  is defined by a vector 

1 2( , , , )j j mja a a . The value ija  is either 0 or 1; it 
is a 1 if period i  is a work period and 0 
otherwise. Let jc  denote the cost of assigning a 
person to shift j  and jx  the (integer) 
decision variable representing the number of 
people assigned to shift j . The problem of 
minimizing the total cost of assigning personnel 
to meet demand can be formulated as the 
following integer programming problem: 

Minimize 1 1 2 2 n nc x c x c x+ + +
  

subject to 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

,

,
                                         for 1, , ,

,

                                     0.

n n

n n

m m mn n m

j

a x a x a x b

a x a x a x b
j n

a x a x a x b

x

 + + + ≥

 + + + ≥


=
 + + + ≥
 ≥





 



with 1 , , nx x  integer. In matrix form this 
integer program is written as follows.  

Minimize c x  
subject to 

x b≥A . 

Such an integer programming problem is 
known to be strongly NP-hard in its most 
general form. However, the A  matrix may 
often exhibit a special structure. For example, 
shift j , 1( , )j mja a , may contain a contiguous 
set of 1’s (a contiguous set of 1’s implies that 
there are no 0’s in between 1’s). However, the 
number of 1’s may often vary from shift to shift, 
since it is possible that some shifts have to work 
longer hours or more days than other shifts. 

Even though the integer programming 
formulation of the general personnel scheduling 
problem (with an arbitrary 0 − 1 A matrix) is 
NP-hard, the special case with each column 
containing a contiguous set of 1’s is easy. It can 
be shown that the solution of the linear 
programming relaxation is always integer. There 
are several other important special cases that are 
solvable in polynomial time. Many papers have 
focused on a number of special cases of the 
problem described above; see, for example, 
Bartholdi et al. (1980), Burns and Carter (1985), 
Burns and Koop (1987), Emmons (1985), 
Emmons and Burns (1991), Gawande (1996), 
Hung and Emmons (1993). 
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3.2  Crew Scheduling 
Another type of workforce scheduling 

involves crew scheduling, which is a form of 
workforce scheduling that is very important in 
transportation industries, e.g., aviation and 
trucking. Crew scheduling is from a 
mathematical point of view very different from 
shift scheduling. It has also received a lot of 
research attention; see, for example, Bodin et al. 
(1983), Marsten and Shepardson (1981), 
Stojkovich et al. (1998). 

Crew scheduling problems are very 
important in the transportation industry, 
especially in the airline industry. The underlying 
model is different from the models considered in 
the previous sections and so are the solution 
techniques. 

Consider a set of m jobs, e.g., flight legs. A 
flight leg is characterized by a point of departure 
and a point of arrival, as well as an approximate 
time interval during which the flight has to take 
place. There is a set of n feasible and 
permissible combinations of flight legs that one 
crew can handle, e.g., round trips or tours (the 
number n usually is very large). A round trip 
may consist of several flight legs, i.e., a plane 
may leave city A for city B, then go to city C, 
before returning to city A. Any given flight leg 
may be part of many round trips. Round trip j , 

1, ,j n=  , has a cost jc . Setting up a crew 
schedule is equivalent to determining which 
round trips should be selected and which ones 
not. The objective is to choose a set of round 
trips with a minimum total cost in such a way 
that each flight leg is covered exactly once by 
one and only one round trip. 

In order to formulate this crew scheduling 
problem as an integer program some notation is 
required. If flight leg i  is part of round trip j , 
then ija  is 1, otherwise ija  is 0. Let jx  
denote a 0 − 1 decision variable that takes the 
value 1 if round trip j  is selected and 0 
otherwise. The crew scheduling problem can be 
formulated as the following integer program. 

Minimize 1 1 2 2 n nc x c x c x+ + +
  

subject to 

11 1 12 2 1

21 1 22 2 2

1 1 2 2

1,

1,
                                   

1.

{0,1}          for 1, , .

n n

n n

m m mn n

j

a x a x a x

a x a x a x

a x a x a x

x j n

 + + + =

 + + + =


 + + + =
 ∈ =











 

Each column in the A matrix is a round trip and 
each row is a flight leg that must be covered 
exactly once by one round trip. The optimization 
problem is then to select, at minimum cost, a set 
of round trips that satisfies the constraints. The 
constraints in this problem are often called the 
partitioning equations and this integer 
programming problem is referred to as the Set 
Partitioning problem (see Appendix A). For a 
feasible solution 1( , , )nx x , the variables that 
are equal to 1 are referred to as the partition. In 
what follows we denote a partition l  by 

{ | 1}l l
jJ j x= = . 

This problem is known to be NP-hard. Many 
heuristics as well as enumeration schemes 
(branch-and-bound) have been proposed for this 
problem. In many of these approaches the 
concept of row prices is used. The vector  

1 2( , , , )l l l l
mρ ρ ρ ρ=   is a set of feasible row 
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prices corresponding to partition lJ satisfying 

1

m
l l
i ij j

i
a c j Jρ

=
= ∈∑ . 

The price l
iρ  may be interpreted as an estimate 

of the cost of covering job (flight leg) i  using 
solution lJ . There are usually many feasible 
price vectors for any given partition. 

The row prices are of crucial importance in 
computing the change in the value of the 
objective if a partition 1J  is changed into 
partition 2J . If 1 2( )Z Z  denotes the value of 
the objective corresponding to partition 1 (2), 
then 

2

2 1 1

1

m

i ij j
ij J

Z Z a cρ
=∈

 
= − − 

 
∑ ∑ . 

The quantity 
1

1

m

j i ij j
i

a cσ ρ
=

= −∑  

can be interpreted as the potential savings with 
respect to the first partition to be obtained by 
including column j . It can be shown that if 

1

1
1, ,

m

i ij j
i

a c j nρ
=

≤ =∑  , 

for any set of feasible row prices 1ρ  
corresponding to partition 1J , then solution 

1J  is optimal. 
Based on the concept of row prices the 

following simple heuristic can be used for 
finding better solutions, given a partition 1J  
and a corresponding set of feasible row prices 

1ρ . The goal is to find a better partition 2J . In 
the heuristic the set N  denotes the indices of 
the columns that are candidates for inclusion in 

2J . 

Algorithm 3.2.1: Column Selection in Set 
Partitioning 
Step 1 

Set 2J = ∅  and {1,2, , }N n=   . 
Step 2 
   Compute the potential savings 

1

1
1, ,

m

j i ij j
i

a c j nσ ρ
=

= − =∑   

Find the column k  in N  with the largest 
potential savings 

1

1

m

i ik k
i

a cρ
=

−∑ . 

Step 3 
For 1,i m=  , if 1ika =  set 0ija =  for 

all j k≠ .  
Step 4 

Let 2 2 { }J J k=   and { }N N k= − . 

Delete from N  all j  for which 0ija =  
for all 1, ,i m=  . 
Step 5  
   If N = ∅  STOP, otherwise go to Step 2.  

When the problem becomes very large, it is 
necessary to adopt more sophisticated 
approaches, namely Branch-and-Bound, Branch- 
and-Price, and Branch-Cut-and-Price. The 
bounding techniques in Branch-and-Bound are 
often based on a technique called Lagrangean 
Relaxation. Branch-Cut-and-Price combines 
branching with so-called cutting planes 
techniques and has been used to solve real world 
problems arising in the airlines industry with 
considerable success. 

4. Timetabling, Reservations, and 
Appointments 

In the hospitality industries, education, and 
health care there are many timetabling, 
reservation, and appointment scheduling 
problems. These problems often tend to be 
mathematically related to one another and may 
require similar solution techniques, which 
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include integer programming formulations as 
well as graph theoretic approaches. 

4.1 Timetabling 
Timetabling refers to a class of generic 

scheduling problems with numerous applications 
in education, transportation, health care, and 
other service industries. The applications 
described in this section are related to some of 
the applications described in subsequent 
sections. 

In the most basic timetabling model there are 
typically n activities or jobs to be scheduled. In 
a timetabling problem an activity (say, for 
example, a meeting) can only be scheduled if a 
given set of very specific people and/or resources 
are all available at the time. So an activity can be 
scheduled at any time as long as all the necessary 
people and/or resources are available in the time 
interval selected. The availability of the people 
may be subject to constraints and the constraints 
may imply that certain subsets of activities 
cannot be done at the same time, because a 
particular person cannot participate in two 
different activities at the same time. A typical 
objective of the scheduling problem may be to 
finish all the activities (e.g., meetings) in the 
shortest possible time, i.e., to minimize the 
makespan. In other words, to finish the last 
activity as early as possible. In a more general 
timetabling problem the timing of activity j may 
also be constrained by an earliest starting time jr  
and a latest completion time jd . 

A distinction can be made between several 
different types of timetabling problems: One 
type of timetabling problem assumes that all 

people involved have the same skill set and are 
therefore interchangeable, i.e., they represent a 
homogeneous workforce. The total number of 
people in the workforce is W and in order to do 
activity j jW  operators have to be present. If 
the sum of the people required by activities j and 
k is larger than W (i.e., j kW W W+ > ), then 
activities j and k may not overlap in time. (Such 
a constraint would be equivalent to a (renewable) 
resource constraint as described in the previous 
section.) This type of timetabling problem may 
be referred to as timetabling with workforce or 
personnel constraints. 

In a second type of timetabling problem each 
person (or resource) has its own identity or skill 
set, i.e., they represent a heterogenous workforce. 
Each activity or job now requires a specific 
subset of the people. In order for an activity to 
be scheduled all the people in its subset have to 
be available. Two activities that need the same 
person cannot be done at the same time. This 
type of timetabling problem is in what follows 
referred to as timetabling subject to operator 
constraints. 

This second type of timetabling can occur in 
many different settings. Consider, for example, a 
large repair shop for aircraft engines. In order to 
do a certain type of repair it is necessary to have 
a certain type of person and a certain type of tool 
available at the same time. Since a given type of 
person may be required for a certain type of 
repair, timetabling may become necessary. A 
second example of this type of timetabling 
occurs when meetings have to be scheduled. 
Each meeting requires a given set of people to 
attend and each meeting has to be assigned to a 
time period in which all who have to attend are 
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available. The meeting rooms also correspond to 
resources. A third example of this type of 
timetabling occurs when exams have to be 
scheduled. Each person represents a student (or 
a group of students) and two exams that have to 
be taken by the same student (or groups of 
students) cannot be scheduled at the same time. 
The objective is to schedule all the exams within 
a given time period, say one week. It is therefore 
necessary to minimize the makespan. 

It turns out that timetabling problems are 
very closely related to graph coloring problems. 
Consider a timetabling problem with operators, 
each having his own identity and skill set (an 
operator may also be equivalent to a specific 
piece of machinery, a fixture, or a tool). A given 
activity either needs or does not need any 
specific operator or tool. Each activity needs for 
its execution a specific subset of the operators 
and/or tools. If two activities require the same 
operator, then they cannot be done at the same 
time. 

In a feasibility version of this problem, the 
goal is to find a schedule or timetable that 
completes all n activities within a given time 
horizon H. In the optimization version, the 
objective is to do all the activities and minimize 
the makespan. 

Even the special case with all activity 
durations being equal does not allow for an easy 
solution. Consider first the feasibility version 
with all durations being equal to 1. Finding for 
this case a conflict-free timetable is structurally 
equivalent to a very well-known node coloring 
problem in graph theory. In this node coloring 
problem a graph is constructed by representing 
each activity as a node. Two nodes are 
connected by an arc if the two activities require 

the same operator(s). The two activities, 
therefore, cannot be scheduled in the same time 
slot. If the length of the time horizon is H time 
slots, then the question boils down to the 
following: can the nodes in the graph be colored 
with H different colors in such a way that no two 
connected nodes receive the same color? This is 
clearly a feasibility problem. The associated 
optimization problem is to determine the 
minimum number of colors needed to color the 
nodes of the graph in such a way that no two 
connected nodes have the same color. This 
minimum number of colors is in graph theory 
referred to as the chromatic number of the graph 
and is equivalent to the makespan in the 
timetabling problem. 

There are a number of heuristics for this 
timetabling problem with durations equal to 1. 
In this section we describe only one such 
procedure, namely the one that is due to Brelaz 
(1979). First some graph theory terminology is 
needed. The degree of a node is the number of 
arcs connected to a node. In a partially colored 
graph, the saturation level of a node is the 
number of differently colored nodes already 
connected to it. In the coloring process, the first 
color to be used is labeled Color 1, the second 
Color 2, and so on. 

Algorithm 4.1.1: Graph Coloring Heuristic 
Step 1 

Arrange the nodes in decreasing order of 
their degree. 
Step 2 

Color a node of maximal degree with Color 
1. 
Step 3 

Choose an uncolored node with maximal 
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saturation level. 
If there is a tie, choose any one of the nodes 

with maximal degree in the uncolored subgraph. 
Step 4 

Color the selected node with the color with 
the lowest possible number. 
Step 5 

If all nodes are colored, STOP. Otherwise go 
to Step 3. 

 
The structure of the heuristic described 

above is quite typical for this type of 
optimization problem. It follows the “path of the 
most resistance”. It tries to schedule early on in 
the scheduling process those parts of the 
problem that appear to be the hardest to schedule 
and that maybe subject to the most constraints. 
The rationale behind such a heuristic is obvious. 
Early on in the process it may still be possible to 
schedule those parts of the problem that appear 
to be hard to schedule. If those parts of the 
problem are postponed to a later stage of the 
scheduling process, they may actually end up to 
be impossible to schedule. 

There is a very extensive literature in the 
field of timetabling. A series of conferences on 
time tabling has led to a number of proceedings 
on this topic, see Burke and Ross (1996), Burke 
and Carter (1998), Burke and Erben (2001), 
Burke and De Causmaecker (2003), Burke and 
Trick (2004), Burke and Rudova (2006). For the 
literature on examination timetabling, see Carter 
(1986), and Burke et al. (1996). 

However, it is clear that there are still many 
open problems in the timetabling area. First, in 
this subsection we have only considered two 
types of workforces: a completely homogeneous 
workforce (i.e., all individuals are identical) and 

the completely heterogeneous workforce (each 
individual has its very own identity and is not 
interchangeable with anyone else). We have not 
considered any mixtures or hybrids of the two 
models described above. Such problems are 
actually quite common in practice and clearly 
very hard. 

4.2 Interval Scheduling and Reservations 
Interval scheduling problems are ubiquitous 

in reservation systems in the hospitality 
industries, e.g., hotels, car-rentals, etc. Consider 
the following reservation model: There are m 
resources in parallel and n activities. Activity j 
has a release date jr , a due date jd , and a 
weight jw . As stated before, all data are integer. 
The fact that there is no slack between release 
date and due date implies that  

j j jp d r= − . 

If we decide to do activity j, then it has to be 
done within the specified time frame. However, 
it may be the case that activity j  cannot be done 
by just any one of the m resources; it may have 
to be done by a resource that belongs to a 
specific subset of the m resources, namely subset 

jM . When all activities have equal weights, the 
objective is to maximize the number of activities 
done. In contrast, when the activities have 
different weights, the objective is to maximize 
the weighted number of activities scheduled. A 
weight may be equivalent to a profit that is made 
by doing the activity. In a more general model 
the weight of activity j may also depend on the 
resource to which it is assigned, i.e., the weight 
is ijw  (i.e., the profit depends on the activity as 
well as on the resource). 
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Example 4.2.1:  A Car Rental Agency Consider 
a car rental agency with four types of cars: 
subcompact, midsize, full size and sport-utility. 
Of each type there are a fixed number available. 
When customer j calls to make a reservation for 

jp  days, he may, for example, request a car of 
either one of two types and will accept the price 
quoted by the agency for either type. The set 

jM  for such a customer includes all cars 
belonging to the two types. The profit made by 
the agency for a car of type i is iπ dollars per 
day. So, the weight of this particular reservation 
is ij i jw pp= .                            

However, if customer j specifically requests 
a subcompact and all subcompacts have been 
rented out, the agency may decide to give him a 
midsize for the price of a subcompact in order 
not to lose him as a customer. The set jM  
includes subcompacts as well as midsizes (even 
though customer j requested a subcompact), but 
the agency’s daily profit is a function of the car 
as well as of the customer, i.e., ijπ  dollars per 
day, since the agency gives him a larger car at a 
lower price. The weight is ij ij jw pp= .       □ 

Most reservation problems can be 
formulated as integer programs. Time is divided 
in periods or slots of unit length. If the number 
of slots is fixed, say H, then the problem is 
referred to as an H-slot problem. Assume, for the 
time being, that the activity durations are equal 
to 1 and let tJ  denote the set of activities that 
need a resource in slot t, i.e., during period 
[ 1, ]t t− . If ijx  denotes a binary variable that 
assumes the value 1 if activity j is assigned to 
resource i and 0 otherwise, then the following 
constraints have to be satisfied: 

1
1

m

ij
i

x
=

≤∑   1, ,j n=    

1
t

ij
j J

x
∈

≤∑   1, , 1,i n t H= =  .  

The first set of constraints ensures that every 
activity is assigned to at most one resource and 
the second set ensures that a resource is not 
assigned to more than one activity in any given 
slot. 

The easiest version of the reservation 
problem is a feasibility problem: does there exist 
an assignment of activities to resources with 
every activity being assigned to a resource? A 
slightly harder version of this feasibility problem 
would be the following: does there exist an 
assignment of activities to resources with 
activity j being assigned to a resource belonging 
to a given subset jM ? It turns out that this 
problem is still relatively easy. 

In the optimization version of the reservation 
problem the objective is to maximize the total 
profit 

1 1

m n

ij ij
i j

w x
= =
∑∑ , 

where the weight ijw  is equivalent to a profit 
associated with assigning activity j to resource i. 
Some special cases of this optimization problem 
can actually be solved in polynomial time. For 
example, consider again the case with all n 
activities having a duration equal to 1, i.e., 

1jp =  for all j, and assume arbitrary resource 
subsets jM  and arbitrary weights ijw . Each 
time slot can be considered as a separate 
subproblem that can be solved as an independent 
assignment problem. 

Another version of the reservation model 
that allows for an efficient solution assumes 
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arbitrary durations, identical weights (i.e., 
1ijw =  for all i and j), and each set jM  

consisting of all m resources (i.e., the m 
resources are identical). The durations, the 
starting times (release dates) and the completion 
times (due dates) are arbitrary integers and the 
objective is to maximize the number of activities 
assigned. This problem cannot be decomposed 
into a number of independent subproblems (one 
for each time slot), since the durations of the 
different activities may overlap. However, it can 
be shown that the following relatively simple 
algorithm maximizes the total number of 
activities. In this algorithm, which is due to 
Bouzina and Emmons (1996), the activities are 
ordered in increasing order of their release dates, 
i.e., 

1 2 nr r r≤ ≤ ≤
. 

Set J denotes the set of activities already 
considered. 

Algorithm 4.2.2: Maximizing Number of 
Activities Assigned 
Step 1 

Set J = ∅  and 1j = . 
Step 2 

If a resource is available at time jr , then 
assign activity j to that resource; include activity 
j in J, and go to Step 4. 

Otherwise go to Step 3. 
Step 3 

Let *j  be such that 
* max( ) max( )k k kj k J k J

C C r p
∈ ∈

= = + . 

If *j j j jC r p C= + > , do not include 

activity j  in J  and go to Step 4.  

Otherwise, delete activity *j  from J, assign 
activity j to the resource freed and include 

activity j in J. 
Step 4 

If j n= , STOP, otherwise set 1j j= +  
and return to Step 2. 

The structure behind the algorithm above is 
actually quite typical of the scheduling 
optimization problems of this type. A schedule is 
being built up going forward in time. Whenever 
a selection has to be made between various 
alternatives, then the alternative is selected 
which results in a situation that is the least 
restrictive and the most favorable (e.g., provides 
the most freedom) for the remaining activities to 
be scheduled. 

Another version of this reservation model 
with zero slack, arbitrary durations, equal 
weights, and identical resources is also of 
interest. Assume there are an unlimited number 
of identical resources in parallel and all 
activities have to be assigned. However, the 
assignment must be done in such a way that a 
minimum number of resources is used. This 
problem is, in a sense, a dual of the problem 
discussed before. It turns out that minimizing the 
number of resources when all activities have to 
be done is also an easy problem. 

It can be solved as follows. Again, the 
activities are ordered in increasing order of their 
release dates, i.e., 1 2 nr r r≤ ≤ ≤ . First, 
activity 1 is assigned to resource 1. The 
algorithm then proceeds with assigning the 
activities, one by one, to the resources. Suppose 
that the first 1j −  activities have been assigned 
to resources 1, 2, , i . Some of these activities 
may have been assigned to the same resource. 
So 1i j≤ − . The algorithm then takes the next 
activity from the list, activity j, and tries to 
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assign it to a resource that already has been 
utilized before. If this is not possible, i.e., 
resources 1, 2, , i  are all busy at time jr , then 
the algorithm assigns activity j to resource 1i + . 
The number of resources utilized after activity n 
has been assigned is the minimum number of 
resources required. 

This last problem, with the activities having 
arbitrary durations, turns out to be a special case 
of the same well-known node coloring problem 
described in the timetabling section of this 
survey. Consider the n nodes and let node j  
correspond now to activity j . If there is an 
(undirected) arc (j, k) connecting nodes j  and 
k, then the processing of activities j and k 
overlap in time and nodes j and k cannot be 
given the same color. If the graph can be colored 
with m (or less) colors, then a feasible schedule 
exists with m  resources. This node coloring 
problem, which is a feasibility problem that is 
NP-hard, is actually more general than the 
reservation problem considered in this section in 
which the number of resources used is 
minimized. 

That the reservation problem considered in 
this section (with the activities having arbitrary 
durations and the number of resources to be 
minimized) is not equivalent to the timetabling 
problem (with heterogeneous operators and all 
processing times equal to 1) but rather a special 
case can be shown as follows: two activities that 
need the same operator in the timetabling 
problem are equivalent to two activities that 
have an overlapping time slot in the reservation 
problem. If two activities in the reservation 
problem have an overlapping time slot, then the 
two nodes are connected. Each color in the 

coloring process represents a resource and 
minimizing the number of colors is equivalent to 
minimizing the number of resources in the 
reservation problem. That the reservation 
problem is a special case follows from the fact 
that the time slots required by an activity in a 
reservation problem are adjacent. However, it 
may not be possible to order the operators in the 
timetabling problem in such a way that the 
operators required for each activity are adjacent 
to one another. It is this adjacency property that 
makes the reservation problem easy, while the 
lack of adjacency makes the timetabling 
problem with operator constraints hard. 

In this subsection we have only discussed 
reservation models without any slack, i.e., 

j j jp d r= − . Of course, in practice, reservation 
systems are designed in such a way that a 
limited amount of slack is allowed, i.e., 

j j jp d r< − . Typically, even though a limited 
amount of slack enables a reservation system to 
generate a better and more profitable solution, 
the optimization problems involved are often 
considerably harder than the optimization 
problems for reservation systems that do not 
allow for any slack. 

A fair amount of research has been done on 
interval scheduling, often just in the form of 
single machine and parallel machine scheduling 
with release dates and due dates or deadlines; 
see, for example, Garey, Johnson, Simons and 
Tarjan (1981), Martel (1982a, 1982b), and 
Posner (1985). Martin, Jones and Keskinocak 
(2003) consider a very interesting reservation 
system for On-Demand Aircraft schedules for 
fractional aircraft operators. 
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4.3 Appointment Scheduling 
The scheduling of appointments is a 

common practice in many service industries, 
mainly to utilize resources efficiently and to 
avoid queueing. Many papers have appeared in 
the literature on appointment scheduling, mostly 
motivated by health care applications. Cayirli 
and Veral (2003), Gupta and Denton (2008) 
provide overviews of the literature, the research 
challenges and opportunities. Hall (2012) 
provides a comprehensive review of models and 
methods used for scheduling the delivery of 
patient care for all parts of the health care 
system. The analysis may be based on anyone of 
a variety of approaches, including stochastic 
programming, queueing theory, and stylized 
scheduling models. 

Appointment scheduling systems are widely 
used as a tool for managing patient arrivals at 
health care facilities in order to match supply 
with demand. In practice it is actually fairly 
common for patients not to show up for their 
scheduled services. Missed appointments result 
in under-utilization of valuable resources and 
limit the access for other patients who could 
have filled the empty slots. Meanwhile, patients 
nationwide experience difficulties in accessing 
medical appointments in a timely manner due to 
long backlogs. Poor appointment utilization and 
excessive delays for outpatient care are widely 
recognized as significant barriers to effective 
health care delivery. 

Appointment overbooking is one operational 
strategy employed by health care providers to 
address the issue of no-shows and at the same 
time increase patients’ access to care. However, 
overbooking may potentially result in an 
overcrowded facility, with increased patients’ 

waiting times and system’s overtime. Recent 
studies have demonstrated that a sensible 
practice of appointment overbooking can 
significantly improve the operational 
performance of a medical facility with patients 
enjoying shorter waiting times and better access 
to services, see for example LaGanga and 
Lawrence (2012), Robinson and Chen (2010), 
Zacharias and Pinedo (2014a), Zacharias and 
Pinedo (2014b). 

In the case of homogeneous patients it is of 
interest to determine the number of patients to 
schedule every day and how to allocate these 
patients to the different slots. The sequencing of 
the patients is also of interest when patients have 
different characteristics (no-show rates, 
processing times, waiting cost coefficients). In 
most cases, finding an optimal schedule is 
analytically intractable, and thus, the majority 
the literature uses enumeration, search 
algorithms, simulation-based techniques and/or 
heuristics. 

Outpatient clinics typically start empty at the 
beginning of a working day, operate for a finite 
amount of time (in the order of say 8-12 hours), 
and shut down until the next period. Therefore, 
it is important to perform transient analysis for 
the random evolution of such systems. As 
pointed out in Bandi and Bertsimas (2012), 
transient queues are difficult to analyze via 
classical queueing techniques. Typically the 
analysis of rich queueing systems over finite 
time horizons is addressed either by computer 
simulation or diffusion approximations. 

The majority of the literature focuses on 
single-server models. Kaandorp and Koole 
(2007), Hassin and Mendel (2008), Klassen and 
Yoogalingam (2009), Robinson and Chen (2010), 
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Millhiser and Veral (2014) consider the 
appointment scheduling problem with 
homogeneous patients who arrive on time for 
their scheduled appointments, if they do show 
up. Begen and Queyranne (2011), Cayirli et al. 
(2012), LaGanga and Lawrence (2012), 
Zacharias and Pinedo (2014a) account further 
for patient heterogeneity. Even though the 
literature for the single server system is quite 
extensive, the multi-server case has received 
limited attention. As pointed out by Gupta and 
Wang (2012) as well, appointment scheduling 
models become intractable if multiple features 
are considered simultaneously. A stylized 
scheduling model with 1s ≥  servers appears in 
Zacharias and Pinedo (2014b). Multi-server 
systems can be used to model for example a 
diagnostic facility where it is crucial to utilize 
resources (e.g. CT scan, X-ray generator, MRI) 
efficiently. Doctors are modeled as “parallel 
servers” in settings where continuity of care is 
not a big concern. Nurses are modeled as 
“parallel servers” when they are the bottleneck 
resource, and/or the presence of a doctor is not 
required (e.g. vaccination and immunization). 

Consider the following simple, tractable, 
stylized scheduling model that provides useful 
insights into appointment scheduling. Variations 
of this model have been analyzed under different 
scopes by various papers in the literature 
including Robinson and Chen (2010), LaGanga 
and Lawrence (2012), Zacharias and Pinedo 
(2014a), Zacharias and Pinedo (2014b). 

Consider 1s ≥  identical service providers 
working in parallel. Each one has in her regular 
schedule n time slots available to serve patients 
in a working day. Beyond these n regular slot, 
each one can serve patients in overtime slots as 

well. Arrivals are driven by scheduled 
appointments. Let m denote the number of 
patients to be scheduled throughout the working 
day, subject to optimization, and let y m ns= −   
denote the level of overbooking. The scheduler 
would like to assign each one of the patients to 
arrive at the beginning of one of the time slots. 
Patients show up with probability 1p q= −  at 
the beginning of the time slot they were assigned 
and require one time slot of service. 

There are three costs associated with an 
appointment schedule: patients’ waiting cost, 
servers’ idle time and overtime costs. The 
objective is to minimize the weighted sum of 
these three costs. If there are less than s patients 
present at the beginning of any one of the 
regular n time slots, then one or more providers 
remain idle and for each provider being idle an 
idle time cost Ic  is incurred. The scheduler 
may overbook certain time slots and assign more 
than s patients in order to compensate for the 
no-show behavior. If more than s patients are 
present at the beginning of a time slot due to 
overbooking, then all but s of these patients have 
to wait. A waiting cost w is incurred for each 
time slot that a patient has to wait before starting 
her service. An overtime cost Oc  is incurred 
for each overtime slot that a provider has to 
remain present at the medical facility to serve 
patients at the end of the regular working day. 

A schedule is denoted by a vector 

1x ( , , )nx x=  , where tx  is the number of  

patients assigned to slot t , with 1
n

tt x m
=

=∑ . It 

can be shown that if *x  is an optimal schedule, 

then *
tx s≥  for all 1, 2, , .t n=    

The backlog of patients at the beginning of 

slot t , denoted by tL , satisfies the Lindley 
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recursion 

{ }1 1max ,0t t tL L A s− −= + − , for 2t ≥ ,  

and  

1 0L = ,  

where ~ Binomial( , )t tA x p  denotes the 
number of new arrivals at slot t . 

Let ( ; , )f k n p  be the probability that a 
Binomial( , )n p  random variable takes a value 
equal to k , i.e.,  

( ; , ) (1 )k n kn
f k n p p p

k
− 

= − 
 

  

and let (x) Pr( )j
t tL jπ = =  denote the 

probability of a backlog of j  patients at the 
beginning of slot t  under schedule x . Let also 

1( )t
tl x stt == −∑  denote the maximum 

possible backlog at the beginning of slot t. 
Assuming that the system is empty at the 
beginning of the working day, then 0

1 (x)=1π  

and (x)j
tπ  can be expressed recursively for 

2,3, , 1t n= +  as 
1

1

min( , )

11
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The expected system's overtime, idle time, 
and patients' aggregate waiting time can be 
expressed respectively as  

1

1 1
0

(x) ( ) (x)
nl

j
n n

j
O E L jπ

+

+ +
=

= = ∑ , 

(x) (x)I O ns pm= + − , 

1

1 1 max 0,( 1) max(0, )

( ; 1, )
(x) (x) .1

t tx ln i
j

t
t i j s i k s j

rf k i p
W j k s

s
p

−

= = = − + = −

− 
 = + − +  
    

∑∑ ∑ ∑

 
Note that the second equation follows from the 
fact that (Number of servers' idle slots) + 
(Number of patients who show up) = ns + 
(Number of overtime slots). We consider the 
following nonlinear integer program 

(x, )
min

m
 (x) c (x) (x)I Oc I O wW+ +   

s.t. m ns≥   
       1, 2, ,tx s t n≥ =    

    
1

n

t
t

x m
=

=∑ ,  

with 1 2, , , nm x x x  being integer.  

Optimal schedules with overbooking are 
front loaded: more patients are scheduled 
towards the beginning of the working day (in 
order to get an empty system running), and the 
schedules tend to become somewhat less dense 
towards the end of the working day (clearly in 
order to avoid high overtime costs). An example 
of such a schedule is displayed in Figure 1 for a 
system with 2 servers, a working day of 24 times 
slots (for example an 8-hour working day with 
20-minute slots), and a no-show rate of 20%. 
For a more comprehensive numerical analysis 
the reader is referred to Zacharias and Pinedo 
(2014b). It is evident, and intuitive, that the 
optimal overbooking level is increasing in the 
no-show rate q. As w increases, the optimal 
schedules become less front-loaded, without 
necessarily observing a decrease in the 
overbooking level. Overbooking increases 
significantly with the number of parallel servers, 
and that increase is more prevalent for higher 
no-show rates.  

  

 



 Michael Pinedo et al.: Scheduling in the Service Industries: An Overview 
18  J Syst Sci Syst Eng 

 
Figure 1. One day schedule profile 

 

5. Transportation Scheduling 
Transportation is a quintessential service that 

can take many different forms, dependent upon 
the mode of transportation. The various modes 
of transportation include buses, trains, airplanes 
and ships. The different modes of transportation 
have different planning horizons, are subject to 
different sets of constraints and have different 
objective functions. Each mode has its own set 
of scheduling techniques. For a handbook on 
transportation in general, see Barnhart and 
Laporte (2006). 

5.1 Urban Transit Scheduling 
Transit systems play a very important role in 

urban transportation systems. There is an intense 
competition between public transit systems and 
the use of private vehicles. An efficient public 
transit system may encourage individuals not to 
use their cars but rather use a public bus or 
subway system. This would mitigate traffic 
congestion and reduce pollution. 

Efficient planning and scheduling of urban 
transit systems in general would improve the 
performance of transit systems. There are 
typically four phases in the planning and 
scheduling of urban transit systems, namely 

(i) planning of the construction of the transit 

network, 
(ii) timetabling design of the bus or subway 

system, 
(iii) vehicle/train scheduling, and 
(iv) crew scheduling. 

Of these four phases, three are scheduling 
related. The transit network design is an 
exception. The objective of the transit network 
design problem is to minimize the costs of the 
various resource investments under fixed or 
variable traffic demand. The optimization 
problem is constrained by the selection of the 
routes and the bus/train capacities. After the 
design of the transit network has been fixed, the 
timetables for each one of the bus routes have to 
be determined. 

Bus timetables clearly depend on traffic 
demand. Departure and arrival times for each 
trip on each line of the entire transit network 
have to be determined. Once the departure and 
arrival times have been determined, the headway 
and frequencies of the buses are also known. 
The most important objective in the bus 
timetabling problem is the minimization of the 
total waiting time of the passengers. Timetabling 
problems become quite interesting when transit 
networks are considered. In transit networks, 
transfers are very important and have to be taken 
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into account. Therefore, timetabling requires a 
synchronization of buses in order to minimize 
passengers’ waiting times at transfer nodes and 
avoid “bunching” of buses. 

In what follows we use the notation from 

Ceder et al. (2001). A bus network is denoted by 

G={A, N}, where A represents the set of bus 

routes and N represents the set of transfer nodes. 

Let T denote the time horizon, M the number of 

bus routes, N the number of transfer nodes, and 

min kH  and max kH  are the minimum and 

maximum headway allowed between two 

consecutive departures on route k. Let kF  

denote the total number of departures on route k ,

kjT  the travel time between the starting point 

and node j on route k. The decision variables are 

ikX  and ikjlnI ; the ikX  represent the departure 

time of the ith bus on route k and 1ikjqnZ =  

implies that the arrival time at node n of the ith 

bus on route k is the same as the arrival time of 

the jth bus on route l at node n. The objective is 

to maximize the number of synchronized trips 

among all departures. The objective function is 

therefore: 
1

1 1 1 1

qk

kl

FFM M

ikjln
k i q k j n A

I
−

= = = + = ∈
∑ ∑ ∑ ∑ ∑   

where klA  is the set of shared nodes between 
routes k  and l . 

Bus scheduling requires that bus headways 
have to lie in between certain minimum and 
maximum values. A headway may be neither too 
big nor too small. A headway that is too big may 
increase the waiting times of passengers while a 
headway that is too small may result in high 

operational costs, running times with small 
numbers of passengers, and higher probabilities 
of bunching of buses. 

A solution to a bus scheduling problem 
specifies the departure and arrival times on each 
route. Based on the assumption, adopted in most 
studies, that the travel times on specific bus lines 
are deterministic, a trip can be defined by the 
departure and arrival times. 

The problem now becomes how to assign 
vehicles to the respective trips, see Freling et al. 
(2001). If we have only one depot for all the 
vehicles, we have a so-called single-depot 
vehicle scheduling problem. The input for such a 
problem is the location of the depot and the set 
of trips with their departure and arrival times. 
Furthermore, a travel time matrix is given which 
provides all the travel times between all the 
locations. A feasible solution for the vehicle 
scheduling problem requires that each trip has to 
be assigned to a vehicle and each vehicle 
operates a set of consecutive trips. The vehicle 
starts out from the depot; after completing all 
trips, the vehicle returns to the depot. Typical 
criteria in the search for an optimal vehicle 
assignment involves fixed and operational costs. 

In the vehicle scheduling context, a new 
network is designed in which the nodes 
represent the trips and the arcs connect trips that 
are “compatible”. The term compatible implies 
that the ending time of one trip is earlier than the 
starting time of the trip immediately following. 
The network is denoted by ( , )G A N′ ′= . 
Vehicle movements between two consecutive 
trips are referred to as idle times without 
servicing passengers. Two dummy nodes are 
added to the network, both representing the 
depot; the two dummy nodes are denoted by 1s  
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and 2s . A feasible vehicle schedule consists of 
several consecutive trips that are compatible 
starting with trip 1s and ending with trip 2s . 
The ijc  is the cost associated with a vehicle 
movement from trip i to trip j and is a known 
parameter. The decision variable ijy  represents 
the relationship between successive trips. 

The vehicle scheduling model can now be 

formulated as follows: 

min  
( , )

ij ij
i j A

c y
′∈

∑  

:( , )
1,ij

j i j
y =∑   i N ′∈  

:( , )
1,ij

i i j A
y

′∈
=∑  j N ′∈  

{0,1}ijy ∈ , ( , )i j A′∈  

The solution of the vehicle scheduling model 
offers a set of disjoint paths from 1s to 2s .   

A natural extension of the single-depot 
vehicle scheduling problem is the Multidepot 
Vehicle Sheduling Problem (MDVSP). In the 
MDVSP, each vehicle belongs to a given depot 
and each trip is assigned to only one vehicle. 
Models for the MDVSP can be classified as 
single-commodity flow models, multicommodity 
flow models, and set partitioning models. The 
methods used for solving such models include 
Branch-and-Cut, LP-Relaxation methods, and 
column generation methods, see Fischetti et al., 
(2001), Mesquita et al., (1999), Ribeiro et al., 
(1994).  

Crew scheduling takes place after the vehicle 
scheduling problem has been solved. Several 
concepts have to be introduced before the crew 
scheduling model can be formulated. A vehicle 
block is defined as a vehicle movement from one 
depot to another. There are one or more trips 

between the departure and end depot. A 
deadhead represents an inevitable movement of 
a vehicle in between two trips or in between a 
trip and a depot without servicing passengers. 
Relief points are points that contain time as well 
as space information regarding a driver being 
able to have a break or being able to leave. A 
task is a sequence of trips and deadheads in 
between two relief points which represents the 
smallest unit of work that can be assigned to a 
crew member. A piece is a sequence of 
consecutive tasks without breaks in between 
which is also called a duty. The objective in the 
crew scheduling problem is to minimize the total 
cost of all duties while each task is part of at 
least one duty. Recently, the simultaneous 
optimization of vehicle and crew scheduling 
have been studied as well, see Huisman et al., 
(2005). Simultaneous optimization involving 
both vehicle and crew scheduling usually results 
in significant cost savings, see Haase et al. 
(2001).  

In the field of urban transportation 
scheduling the timetabling problems for Mass 
Rapid Systems (MRT) or Metro systems are 
similar to train timetabling problems. Most 
studies in the current literature have focused on 
a single, one way track that connects two major 
stations with several smaller stations in between. 
An express train may not stop at a smaller 
station in between. A controller can slow down a 
train or make the dwelling time at an 
intermediate station longer. Let {1,2, , }S s=   
denote the set of stations and let {1,2, , }T t=    
denote the set of trains. The decision variables in 
the train timetabling problem are the departure 
times at stations {1,2, , 1}s −  and the arrival 
times at stations {2,3, , }s  for each train t. 
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There is actually an ideal timetable for each train; 
the ideal timetable is given and depends on 
passenger behavior and preferences. The most 
popular objective function for the train 
timetabling problem is to minimize the cost that 
is associated with the deviation of the actual 
timetable from the ideal timetable. Constraints 
in the train timetabling problem include track 
capacity constraints, time window constraints 
and other physical constraints. The most popular 
objective function for the train timetabling 
problem is to minimize the cost that is 
associated with the deviation of the actual 
timetable from the ideal timetable. Constraints 
in the train timetabling problem include track 
capacity constraints, time window constraints 
and other physical constraints. 

Bus as well as train timetabling are supposed 
to generate the arrival as well as the departure 
times of each bus (train) at each stop (station). 
Most of the differences between bus timetabling 
and train timetabling are due to the existence of 
tracks; some of these differences are the 
following: 

(i) Because of safety regulations, a minimum 
headway has to be maintained between two 
consecutive trains. However, for bus systems the 
headways are not a hard constraint. 

(ii) Takeover phenomena in the context of 
train timetabling occur only at the train stations. 
However, bus timetabling does not have any 
constraints with regard to takeovers. 

(iii) Controllers can manipulate both the 
speed of trains and the dwelling times at the 
train stations. The control granularity of trains is 
higher than of buses. In the context of bus 
operation, it is impossible to control the running 
time and dwell time for a bus since traffic in 

urban transportation networks is highly 
uncertain. 

Mainly because of these differences, the 
modeling of the train timetabling problem is 
more complicated than that of the bus 
timetabling problem, see Carey and Lockwood 
(1995), and Caprara et al. (2002). Bus 
timetabling typically faces the challenges of a 
highly uncertain urban transportation 
environment. All these uncertainties (e.g. 
uncertain on-route travel time, uncertain dwell 
time on bus stops and etc.) are hard to model. 

An extensive amount of research has been 
done on the scheduling of public transport 
(buses and trains). This has resulted in a number 
of proceedings of conferences, see Wren and 
Daduna (1988), Desrochers and Rousseau 
(1992), Daduna et al. (1995), Wilson (1999). 

5.2 Maritime Scheduling 
Scheduling plays a very important role in 

shipping. An enormous amount of work has 
been done on scheduling in this mode of 
transportation. Historically, Mathematical 
Programming and in particular Integer 
Programming has played a very important role 
in maritime as well as in aviation scheduling. 
There are several special types of Integer 
Programming formulations that have numerous 
practical applications in many of the various 
forms of transportation scheduling. This 
subsection first describes three very widely used 
Integer Programming formulations, namely Set 
Partitioning, Set Covering, and Set Packing. The 
integer programming formulation of the Set 
Partitioning problem has the following structure. 

Minimize 1 1 2 2 n nc x c x c x+ + +   
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subject to 
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with all ija  values being either 0 or 1.  

When the equal signs ( = ) in the constraints 
are replaced by greater or equal signs ( ≥ ), the 
problem is referred to as the Set Covering 
problem, and when the equal signs are replaced 
by less than or equal signs ( ≤ ), then the 
problem is referred to as the Set Packing 
problem. In practice, the objective of the Set 
Packing problem is typically a profit 
maximization objective. 

The mathematical model underlying the Set 
Partitioning problem can be described as follows: 
Assume m different elements and n different 
subsets of these m elements. Each subset 
contains one or more elements. If 1ija = , then 
element i  is part of subset j, and if 0ija = , 
then element i is not part of subset j. The 
objective is to find a collection of subsets such 
that each element is part of exactly one subset. 
The objective is to find that collection of subsets 
that have a minimum cost. In the Set Covering 
problem, each element has to be part of at least 
one subset. In the Set Packing problem each 
subset yields a certain profit jπ  and the total 
profit has to be maximized in such a way that 
each element is part of at most one subset. 

A well-known maritime scheduling example 
is the so-called Tanker Scheduling Problem, 
which is an example of the Set Packing problem 

mentioned before. The reason why the tanker 
scheduling problem is a Set Packing problem 
and not a Set Partitioning problem is based on 
the fact that not every cargo has to be 
transported by a company owned tanker. If it is 
advantageous to assign a cargo to an outside 
charter, then that is allowed. This implies that 
the first set of constraints in the MIP are 
inequality ( ≤ ) constraints rather than equality (=) 
constraints. 

Oil companies that own and operate tanker 
fleets typically make a distinction between two 
types of ships. One type of ship is 
company-owned and the other type of ship is 
chartered. The operating cost of a 
company-owned ship is different from the cost 
of a charter that is typically determined on the 
spot market. Each ship has a specific capacity, a 
given draught, a range of possible speeds and 
fuel consumptions, and a given location and 
time at which the ship is ready to start a new 
trip. 

Each port also has its own characteristics. 
Port restrictions take the form of limits on the 
deadweight, draught, length, beam and other 
physical characteristics of the ships. There may 
be some additional government rules in effect as 
well. 

A cargo that has to be transported is 
characterized by its type (e.g., type of crude), 
quantity, load port, delivery port, time window 
constraints on the load and delivery times, and 
the load and unload times. A schedule for a ship 
defines a complete itinerary, listing the sequence 
of ports to be visited within the time horizon, the 
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time of entry at each port and the cargoes loaded 
or delivered at each port. 

The objective is to minimize the total cost of 
transporting all cargoes. This total cost consists 
of a number of elements, namely the operating 
costs for the company-owned ships, the spot 
charter rates, the fuel costs, and the port charges. 
Port charges vary greatly between ports and 
within a given port charges typically vary 
proportionally with the deadweight of the ship. 

In order to present a formal description of 
the problem the following notation is used. Let n 
denote the number of cargoes to be transported, 
T the number of company-owned tankers, and p 
the number of ports. Let iS  denote the set of 
all possible schedules for ship i. Schedule l  
for ship i, il S∈ , is represented by the column 
vector 

1

2

 

l
i
l
i

l
in

a

a

a



  

The constant l
ija  is 1 if under schedule l  ship 

i transports cargo j and 0 otherwise. Let l
ic  

denote the incremental cost of operating a 
company-owned ship i under schedule l versus 
keeping ship i idle over the entire planning 
horizon. The operating cost can be computed 
once schedule l has been specified, since it may 
depend in various ways on the characteristics of 
the ship and of the schedule, including the 
distance travelled, the time the ship is used, and 
the ports visited. The cost *

jc  denotes the 
amount that has to be paid on the spot market to 
transport cargo j on a ship that is not company 

owned. 
Let 

*

1

n
l l l
i ij j i

j
a c cπ

=
= −∑   

denote the “profit” (i.e., the amount of money 
that does not have to be paid on the spot market) 
by operating ship i according to schedule l. The 
decision variable l

ix  is 1 if ship i follows 
schedule l and zero otherwise. 

The Tanker Scheduling Problem can now be 
formulated as follows: 

Maximize 
1 i

T
l l
i i

i l S
xπ

= ∈
∑ ∑   

subject to 

1
1

i

T
l l
ij i

i l S
a x

= ∈

≤∑ ∑    1, ,j n=    

1
i

l
i

l S
x

∈

≤∑        1, ,i T=    

{0,1}l
ix ∈        ,   1, ,il S i T∈ =    

The objective function specifies that the total 
profit has to be maximized. The first set of 
constraints imply that each cargo can be 
assigned to at most one tanker. The second set of 
constraints specifies that each tanker can be 
assigned at most one schedule. The remaining 
constraints imply that all decision variables have 
to be binary 0 − 1. This optimization problem is 
typically referred to as a set-packing problem. 

The algorithm used to solve this problem is a 
branch-and-bound procedure. However, before 
the branch-and-bound procedure is applied, a 
collection of candidate schedules have to be 
generated for each ship in the fleet. As stated 
before, such a schedule specifies an itinerary for 
a ship, listing the ports visited and the cargoes 
loaded or delivered at each port. The generation 
of an initial collection of candidate schedules 

 



Michael Pinedo et al.: Scheduling in the Service Industries: An Overview 
24  J Syst Sci Syst Eng 

has to be done by a separate ad-hoc heuristic 
that is especially designed for this purpose. The 
collection of candidate schedules should include 
enough schedules so that potentially optimal 
schedules are not ignored, but not so many that 
the set-packing problem becomes intractable. 
Physical constraints such as ship capacity and 
speed, port depth and time windows limit the 
number of feasible candidate schedules 
considerably. Schedules that have a negative 
profit coefficient in the objective function of the 
set-packing formulation can be omitted as well. 

The branch-and-bound method for solving 
the problem is typically based on customized 
branching and bounding procedures. Since the 
problem is a maximization problem a good 
schedule generated by a clever heuristic (or a 
manual method) provides a lower bound for the 
value of the optimal solution. When considering 
a particular node in the branching tree, it is 
necessary to develop an upper bound for the 
collection of schedules that correspond to all the 
descendants of this particular node; if this upper 
bound is less than the lower bound on the 
optimum provided by the best schedule currently 
available, then this node can be fathomed. 

There are a variety of suitable branching 
mechanisms for the branch-and-bound tree. The 
simplest mechanism is just the most basic 0 − 1 
branching. Select at a node a variable l

ix  which 
has not been fixed yet at a higher level node and 
generate branches to two nodes at the next level 
down: one branch for 0l

ix =  and one for 1l
ix = . 

The selection of the variable l
ix  may depend 

on the solution of the LP relaxation at that node; 
the most suitable l

ix  may be the one with a 
value closest to 0.5 in the solution of the LP 
relaxation. If at a node a variable l

ix  is set 

equal to 1 for ship i, then certain schedules for 
other ships can be ruled out for all the 
descendants of this node; that is, the schedules 
for other ships that have a cargo in common 
with schedule l for ship i do not have to be 
considered any more. 

Another way of branching can be done as 
follows: Select at a given node a ship i that has 
not been selected yet at a higher level node and 
generate for each schedule l in iS a branch to a 
node at the next level down. In the branch 
corresponding to schedule l the variable 1l

ix = . 
Using this branching mechanism, one still has to 
decide at each node which ship i to select. One 
could select the i based on several criteria. For 
example, a ship that transports many cargoes or 
a ship that may be responsible for a large profit. 
Another way is to select an i that has a highly 
fractional solution in the LP relaxation of the 
problem (e.g., there may be a ship i with a 
solution 1/l

ix K=  for K different schedules 
with K being a fairly large number). 

An upper bound at a node can be obtained 
by solving the linear relaxation of the 
set-packing problem corresponding to that node, 
i.e., the integrality constraints on l

ix are replaced 
by the non-negativity constraints 0l

ix ≥ . This 
problem may be referred to as the continuous 
set-packing problem. The value of the optimal 
solution is an upper bound for the values of all 
possible solutions of the set-packing problem at 
that node. It is nowadays possible to find with 
little computational effort optimal solutions (or 
at least good upper bounds) for very large 
continuous set-packing problems, making such a 
bounding mechanism quite effective. 

For details regarding tanker scheduling or 
scheduling in shipping in general, see Brown, 
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Graves and Ronen (1987), Fisher and 
Rosenwein (1989), Perakis and Bremer (1992), 
Christiansen (1999), Christiansen et al. (2004), 
Christiansen et al. (2006).  

5.3 Aircraft Scheduling 
Aircraft scheduling provides an interesting 

contrast to the tanker scheduling just considered. 
The classical aircraft routing and scheduling 

problem is an example of the standard Set 
Partitioning problem. It is clear that in the 
aviation industry the constraint that each flight 
leg should be covered exactly once by a round 
trip is important. On the other hand, in the 
trucking industry, it may be possible to have one 
leg covered by several round trips; the 
constraints may then be relaxed and the problem 
assumes a Set Covering structure. 

The Daily Aircraft Routing and Scheduling 
Problem can now be described as follows: Given 
a heterogeneous aircraft fleet, a collection of 
flight legs that have to be flown in a one-day 
period with departure time windows, durations, 
and cost/revenues corresponding to the aircraft 
type for each leg, a fleet schedule has to be 
generated that maximizes the airline’s profits 
(possibly subject to certain additional 
constraints). 

Some of the additional constraints that often 
have to be taken into account in an Aircraft 
Routing and Scheduling Problem are the number 
of available planes of each type, the restrictions 
on certain aircraft types at certain times and at 
certain airports, the required connections 
between flight legs (the so-called “thrus”) 
imposed by the airline and the limits on the daily 
service at certain airports. Also, the collection of 
flight legs may have to be balanced, i.e., at each 

airport there must be, for each airplane type, as 
many arrivals as departures. One must further 
impose at each airport the availability of an 
equal number of aircraft of each type at the 
beginning and at the end of the day. 

In the formulation of the problem the 
following notation is used: L denotes the set of 
flight legs, T denotes the number of different 
aircraft types, and im  denotes the number of 
available aircraft of type i,  1, ,i T=  . So the 
total number of aircraft available is 

1

T

i
i

m
=
∑ . 

Some fight legs may be flown by more than 
one type of aircraft. Let iL  denote the set of 
flight legs that can be flown by an aircraft of 
type i and let iS  denote the set of feasible 
schedules for an aircraft of type i. This set 
includes the empty schedule (0); an aircraft 
assigned to this schedule is simply not being 
used. Let ijπ  denote the profit generated by 
covering flight leg j with an aircraft of type i. 
With each schedule il S∈  there is a total 
anticipated profit 

i

l l
i ij ij

j L
aπ π

∈

= ∑ ,  

where l
ija  is 1 if schedule l covers leg j and 0 

otherwise. If an aircraft has been assigned to an 
empty schedule, then the profit is 0

iπ . The 
profit 0

iπ  may be either negative or positive. It 
may be negative when there is a high fixed cost 
associated with keeping a plane for a day; it may 
be positive when there is a benefit having a 
plane idle (some airlines want to have idle 
planes that can serve as stand by). Let A denote 
the set of airports, and iA  be the subset of 
airports that have facilities to accommodate 
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aircraft of type i. Let l
iho  be equal to 1 if the 

origin of schedule l, il S∈ , is airport h, and 0 
otherwise; let l

ihd  be equal to 1 if the final 
destination of schedule l is airport h, and 0 
otherwise. 

The binary decision variable l
ix  takes the 

value 1 if schedule l is assigned to an aircraft of 
type i, and 0 otherwise; the integer decision 
variable 0

ix  denotes the number of unused 
aircraft of type i, i.e., the aircraft that have been 
assigned to an empty schedule. 

The Daily Aircraft Routing and Scheduling 
Problem can now be formulated as follows: 

Maximize 
1 i

T
l l
i i

i l S
xπ

= ∈
∑ ∑   

subject to 

1
1

i

T
l l
ij i

i l S
a x

= ∈

=∑ ∑    j L∈   

i

l
i i

l S
x m

∈

=∑    1, ,i T=    

( ) x 0
i

l l l
ih ih i

l S
d o

∈

− =∑     1, , ii T h A= ∈   

{0,1}l
ix ∈     1, , , ii T l S= ∈   

The objective function specifies that the total 
anticipated profit has to be maximized. The first 
set of constraints imply that each flight leg has 
to be covered exactly once. (This set of 
constraints is somewhat similar to the first set of 
constraints in the formulation of the tanker 
scheduling problem.) The second set of 
constraints specifies the maximum number of 
aircraft of each type that can be used. The third 
set of constraints correspond to the flow 
conservation constraints at the beginning and at 
the end of the day at each airport for each 
aircraft type. The remaining constraints imply 

that all decision variables have to be binary 0 − 
1. This model is basically a Set Partitioning 
Problem with additional constraints. The 
algorithm to solve this problem is also based on 
Branch-and-Bound; the version of Branch-and- 
Bound is typically referred to as Branch-and- 
Price. 

The aircraft scheduling problem described 
above typically results in cyclic schedules. This 
is in contrast to the schedules for tankers (oil, 
natural gas, bulk cargo in general) which are 
usually not cyclic; the scheduling process for 
tankers is usually based on a rolling horizon 
procedure. For more details concerning 
scheduling in the aviation industry, see 
Stojkovich (2002), Desaulniers (1997), Barnhart 
et al. (1998), Cordeau et al. (2001), and Barnhart 
et al. (2003). 

5.4 Emergency Operations Scheduling 
Whenever a geographical area is hit by a 

disaster, emergency operations have to be 
organized. Disasters can take many different 
forms. A disaster may be an act of nature (e.g., 
hurricane, earthquake, etc.) or may be man-made 
(e.g., act of war, etc.). Some acts of nature may 
give an advance warning of a couple of days 
(e.g., hurricane), other acts of nature may not 
(e.g., earthquake, tsunami). 

The management of operations before, 
during and after the occurrence of a disaster is 
clearly of importance. In general, there are four 
stages in emergency operations management; the 
four stages being mitigation, preparedness, 
response and recovery. In this section, we 
particularly focus on the response stage, since it 
is this stage that requires routing and scheduling. 
A response to a disaster involves the allocation 
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of resources that are needed for mitigating the 
economic and human losses. In what follows, 
we focus on the planning and scheduling of the 
allocation of such resources. The planning and 
scheduling of the resource allocations refer 
mainly to the effective transportation of the 
different resources to the disaster areas. There 
are basically two different types of resources to 
be allocated, namely renewable resources (e.g., 
personnel, equipment) and non-renewable 
resources (e.g., medical supplies, building 
material). The allocation of the resources has to 
be coordinated in an efficient manner. We first 
concentrate on the resource planning and 
scheduling problem and assume that routing and 
transportation alternatives are known in advance 
and do not need to be optimized. However, 
assuming that the transportation routes are 
known in advance is often not reasonable and 
practical. The transportation routes in many 
situations are not determined in advance. Travel 
time of transportation is another critical factor 
that influences the routing decision significantly. 

Before any rescue activities can be organized, 
it is necessary to build temporary emergency 
distribution centers (DCs) in order to accelerate 
the rescue processes. The emergency distribution 
centers (DCs) can take the form of warehouses 
that store the supplies, temporary hospitals, 
medical supply centers, and so on. The planning 
stage may require a formulation of models that 
can help determine the number and locations of 
such DCs. The most important differences 
between location problems in emergency 
scenarios and traditional location problems are 
the following: 

(i) a low frequency of disaster occurrences; 
(ii) a high frequency of requests for aid from 

the distribution centers (after a disaster, the 
demands from affected areas may be huge); 

(iii) different demand areas having different 
characteristics (due to the diversity of population 
density, economic situation and other features of 
affected areas, the impact of a disaster on each 
potential demand area may be quite different); 

(iv) resources have to be coordinated in order 
to accomplish rescue tasks; 

(v) the level of uncertainty in the environ- 
ment may be elevated. 

An example of this uncertainty is the 
availability of transportation networks. Basically, 
there are three standard models that are often 
referred to as the covering models, namely the 
P-median and the P-center models, see Jia, 
Ordonez and Dessouky (2007). For a framework 
of emergency planning and scheduling, see 
Caunhye, Nie and Pokharel (2012). 

Once the DCs have been set up, the problem 
boils down to on how to distribute the supplies 
in order to meet the demands. There are two 
important research directions here: one approach, 
which is more macroscopic, models the 
distribution of the emergency supplies as a 
multi-commodity network flow problem. The 
goods consists of renewable and non-renewable 
items that should be coordinated to mitigate the 
negative effects of disaster. The second approach, 
which is more microscopic, models the 
distribution problem as a vehicle routing 
problem. Let us first consider the network flow 
modeling paradigm and then go into the vehicle 
routing problem in an emergency context. 

After the DCs have been set up, emergency 
materials have to be distributed in the affected 
areas. Commodity network flow models may be 
used. Quantities of commodity flows are going 
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to be determined by the network flow models. 
The objectives include the minimization of the 
transportation cost, the makespan of the 
schedule, the amount of food delivered, the total 
amount of demand that has not been met, etc. 
The constraints include the number of vehicles 
and their capacities, the capacity of the links in 
the transportation network, and so on. 

Commodity network flow models are not 
enough to depict the complexity of emergency 
resource scheduling. Disaster response 
scheduling has one very unique feature that 
requires the simultaneous scheduling and 
coordination of renewable resources (e.g., 
specialists, medical personnel, etc.) as well as of 
non-renewable resources (e.g., syringes, 
antibiotics, surgical blades, vaccines and 
bandages, etc.). When operations scheduling 
depends on both renewable and nonrenewable 
resources and the availability of both type 
resources have to be satisfied, the resulting 
scheduling problems tend to be very difficult. 

In reality, renewable and nonrenewable 
resources have to be coordinated and 
synchronized with one another so that rescue 
activities can be performed. Renewable 
resources are also called permanent resources. In 
the resource assignment and project scheduling 
literature, some work has been done in this area, 
see Ait-Kadia et al. (2011), Wong et al. (2013) 
and Van Peteghem and Vanhoucke (2014); for a 
literature review on project scheduling, see 
Weglarz et al. (2011). In a typical emergency 
resource assignment and scheduling problem 
that takes both renewable and nonrenewable 
resources into account, the starting time of a 
service in an affected area can occur only after 
both the required renewable and nonrenewable 

resources have arrived. There are also some 
constraints with regard to the demand and the 
supplies. Another class of constraints deals with 
the travel times of the transportation. The 
objective function can be the tardiness of the 
services, see Lee and Lei (2001). 

In the planning and scheduling of emergency 
operations, the routing of the vehicles plays an 
important role in the delivery system. The 
modeling of the delivery system is similar to a 
Vehicle Routing Problem (VRP). The traditional 
vehicle routing problem is one of the basic 
problems in the transportation and logistics 
domain. It focuses on the optimal routing design 
of the delivery of the goods at the distribution 
center to customers who are scattered at different 
locations. 

Traditional vehicle routing problems can be 
formulated following the notation and 
formulation by Campbell, Vandenbussche, and 
Hermann (2008). Let {1,2, , }N N=   denote 
the set of customers and let 0 denote the depot. 
Let ijt  denote the travel time between nodes i 
and j. The binary variable ijx  indicates 
whether or not a vehicle travels from node i to 
node j. Let ia denote the arrival time of 
customer i. A vehicle routing problem in the 
emergency context can now be formulated as 
follows: 

Minimize 
0,

ij ij
i j N

t x
∈
∑   

subject to 

0

1ij
j I

x
∈

=∑ , 0i I∈   

0 0

0ij ji
j I j I

x x
∈ ∈

− =∑ ∑ , 0i I∈  

(1 )ij i j ijt a a T x+ ≤ + − , ,i j N∈   
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0 0i i ia t x≥ , i N∈   

{0,1}ijx ∈ , 0,i j N∈  

0ia > , 0i N∈  

The objective of the mixed integer 
programming model is to minimize the total 
travel time. The constraints maintain 
conservation of flows and impose bounds on the 
travel times. 

In the disaster management context, it is 
necessary to consider other factors by adding 
variables and constraints into the mathematical 
programming model. There are many other 
constraints that can be considered in a vehicle 
routing problem in a disaster management 
context which are the following: 

(i) In a typical vehicle routing problem, the 
vehicles depart from a given depot and return to 
the depot after all service provisions have been 
taken care of. In an emergency situation, due to 
the high level of uncertainty, the emergency 
vehicle may not return to the depot, but stay at a 
stop on its route waiting for further instructions. 
Another possibility for this routing style is that 
vehicles need on the one hand dispatch goods to 
affected areas and on the other hand move sick 
and injured people to medical centers. The 
medical centers can also be in affected areas. 
The supplier and demand areas are 
interchangeable. This feature makes the new 
vehicle routing problem a bit like a simultaneous 
pickup-delivery vehicle routing problem. 

(ii) The vehicle capacity may not be able to 
meet the demand. In such a case, multiple 
vehicles are needed to meet the demand at one 
of the affected areas. This situation is like the 
Split Delivery Vehicle Routing Problem 
(SDVRP). In SDVRP, the requirement that each 

customer can only be visited once no longer 
applies. 

(iii) Unpredictability of demand. This 
uncertainty is different from traditional 
commercial delivery systems where typically 
demand is relatively stable, see Campbell, 
Vandenbussche and Herman (2008). 

(iv) Coordination among organizations. 
There are various suppliers. Different vehicles 
are capable of delivering different resources. An 
example of this situation is that medical teams 
and medical suppliers need to be coordinated. 
The vehicles need to be coordinated as well. 

(v) Some items are delivered only once 
during the entire disaster relief period and some 
items may need daily-based delivery such as 
food and water, particular in hot weather. For a 
survey paper that focuses on the periodic vehicle 
routing problem, see Francis, Smilowitz and 
Tzur (2008). 

On the objective function side, it is important 
to deliver the goods to the demand areas in a fast 
and fair manner. Market forces and mechanisms 
tend to suddenly disappear in disaster relief 
operations. The disappearance of markets 
changes the nature of economics and operations. 
Even though there are no unified rules for 
allocating resources in disaster operations, 
fairness is a very important aspect of the goods 
delivery; transportation costs are not a top 
priority in disaster relief. Therefore, many 
objective functions have been developed with an 
emphasis on fairness. Some examples of such 
objective functions are: 

(i) Minimize the arrival time of last visited 
area. 

(ii) Minimize the average arrival time. 
(iii) On the route level, fairness is measured 
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as the weighted arrival time normalized by the 
demand on node, see Huang, Smilowitz and 
Balcik (2012). 

(iv) Number of unsatisfied demands. 
For a discussion with regard to the 

appropriateness of the various types of objective 
functions in disaster relief operations, see 
Holguin-Veras, Jaller, Wassenhove, Pérez and 
Wachtendorf (2012) and Holguin-Veras, Pérez, 
Jaller, Wassenhove and Aros-Vera (2013). 

In order to solve the various different types 
of vehicle routing problems, a cornucopia of 
exact and heuristic algorithms have been 
developed. Baldacci, Mingozzi and Roberti 
(2012) present an overview of the exact 
algorithms for VRP under capacity and time 
window constraints. Augerat et al. (1998) 
developed a Branch-and-Cutalgorithm for 
solving the capacitated VRP. Set Partition 
formulations have also been applied to both the 
capacitated VRP and the VRP with time 
windows. The SD-VRP has also been used for 
modeling this dispatching problem in disaster 
operations settings. A two-stage algorithm with 
valid inequalities is proposed to solve the split 
delivery vehicle routing problem, see Jin, Liu 
and Bowden (2007). For a shortest path search 
algorithm based on dynamic programming for 
the vehicle routing problem with split pickups, 
see Lee et al. (2006). Normally, exact algorithms 
for solving the VRP and its large number of 
variants are usually constrained by the problem 
size. A number of heuristics have therefore been 
developed for dealing with large size problems: 
for tabu search algorithms for the Split Delivery 
Vehicle Routing Problem, see Archetti, Speranza 
and Hertz (2006) and Archetti, Speranza and 
Savelsbergh (2008). 

6. Professional Sports and Entertain- 
ment 

Professional sports and entertainment are 
very important service industries with their own 
sets of scheduling problems. They have their 
own planning horizons, their own objective 
functions and their own constraints. 

6.1 Tournament Scheduling in Professional 
Sports 

Sport events are a very important segment of 
the entertainment and recreation industry. Many 
different branches of sports maintain regular 
local, regional or national tournaments. There is 
a great variety in types of tournaments, each 
type having its own rules and restrictions. These 
tournaments have to be scheduled and it turns 
out that most of these schedules are anything but 
trivial to come by. This industry has inspired a 
significant amount of theoretical as well as more 
applied and more computational research, see 
Butenko et al. (2004). The more theoretical 
research established a very strong link between 
tournament scheduling and graph theory, see De 
Werra (1988). 

Many tournament schedules are constrained 
in time; that is, the number of rounds or slots in 
which games are played is equal to the number 
of games each team must play plus some extra 
rounds or slots that are typically required in 
leagues with an odd number of teams. For 
example, in a so-called single round robin 
tournament each team has to play every other 
team once, either at home or away. Such a 
tournament among n teams with n being even 
requires 1n −  rounds. If the number of teams is 
odd, then the number of rounds is n (due to the 
fact that in every round one of the teams has to 
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remain idle). In a double round robin tournament 
each team has to play every other team twice, 
once at home and once away. It turns out that 
such a tournament among n teams requires 
either 2 2n −  or 2n rounds (dependent upon 
whether n is even or odd). 

In order to formulate the most basic version 
of a tournament scheduling problem certain 
assumptions have to be made. Assume for the 
time being that the number of teams, n, is even. 
(It happens to be the case that tournament 
scheduling with an even number of teams is 
slightly easier to analyze than with an odd 
number of teams.) Consider a single round robin 
tournament in which each team has to play every 
other team exactly once, i.e., each team plays 

1n −  games. Because of the fact that there are 
an even number of teams it is possible to create 
for such a tournament a schedule that consists 
exactly of 1n −  rounds with each round having 
n/2 games. 

More formally, let t denote a round (i.e., a 
date or a time slot) in the competition. The 0 − 1 
variable ijtx  is 1 if team i plays at home against 
team j in round t; the variable ijtx  is 0 
otherwise. Of all the ijtx  variables a total of 
( / 2)( 1)n n −  are 1; the remaining are 0. The 
following constraints have to be satisfied: 

1
( ) 1

n

ijt jit
i

x x
=

+ =∑  for 1, , ; 1, , 1,j n t n= = −    

1

1
( ) 1

n

ijt jit
t

x x
−

=
+ =∑  for .i j≠   

In practice, there are usually many additional 
constraints concerning the pairing of teams and 
the sequencing of games. When there are a large 
number of constraints, one may just want to find 
a feasible schedule; finding a feasible schedule 

may already be hard. 
However, it may at times also occur that one 

would like to optimize an objective. In order to 
formulate one of the more common objective 
functions in tournament scheduling some 
terminology is needed. If one considers the 
sequence of games played by a given team, each 
game can be characterized as either a Home (H) 
game or as an Away (A) game. The pattern of 
games played by a given team can thus be 
characterized by a string of H’s and A’s, e.g., 
HAHAA. There is typically a desire to have for 
any given team the home games and the away 
games to alternate. That is, if a team plays one 
game at home, it is preferable to have the next 
game away and vice versa. If a team plays in 
rounds t and 1t +  either two consecutive games 
at home or two consecutive games away, then 
the team is said to have a break in round 1t + . A 
common objective in tournament scheduling is 
to minimize the total number of breaks, see 
Trick (2001). It has been shown in the literature 
that in any timetable for a single round robin 
tournament with n teams (n being even), the 
minimum number of breaks is 2n − . The 
algorithm that generates a schedule with this 
minimum number of breaks is constructive and 
very efficient; see Miyashiro and Matsui (2003). 
Example 6.1.1: Breaks in a Single Round 
Robin Tournament 

Consider 6 teams and 5 rounds. 
 round 1 round 2 round 3 round 4 round 5 
term 1 -6 3 -5 2 -4 
term 2 -5 6 *4 -1 3 
term 3 4 -1 *-6 5 -2 
term 4 -3 5 -2 6 *1 
term 5 2 -4 1 -3 *-6 
term 6 1 -2 3 -4 5 
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When team i plays in round t against team j and 
the game is entered in the table as j, then team i 
plays at the site of team j. If it is entered as −j, 
then team i plays at home. The timetable shown 
above has 4 breaks, each of them marked with a 
*. Since there are 6 teams, it is not possible to 
find for this tournament a schedule with less 
than 4 breaks.                          □ 

Assume now that the number of teams is odd. 
The minimum number of rounds in a single 
round robin tournament is now larger than n−1. 
If the number of teams is odd, then one team has 
to remain idle in each round. When a team does 
not play in one round, it is referred to as a Bye 
(B). So when the number of teams is odd, the 
sequence of games that have to be played by a 
given team is a string of H’s, A’s, and one or 
more B’s, e.g., HAHABA. With these more 
complicated types of patterns a break can be 
defined in several ways. An HBH substring may 
or may not be considered a break; if the B is 
considered equivalent to an A, then there is no 
break. If the B is considered equivalent to an H, 
then there is a break (actually, then there are two 
breaks). However, one can argue that an HBH 
pattern is less bad than an HHH pattern; one can 
even argue that it is less bad than an HH pattern. 
So, as far as penalties or costs are concerned, the 
cost of an HBH pattern may actually be less than 
the cost of a single break. 

It turns out that a single round robin 
tournament problem with arbitrary n (n being 
either even or odd) can be described as a graph 
coloring problem. This equivalence is somewhat 
similar to the relationships between timetabling 
problems and graph coloring problems described 
in a previous section; it provides some 
additional insight into the tournament 

scheduling problem as well. Consider a single 
round robin tournament in which each club has 
to face every other club once and only once; the 
game is either a home game (H) or an away 
game (A). A directed graph G=(N, B) can be 
constructed in which set N consists of n nodes 
and each node corresponds to one team. Each 
node is linked via an arc to each other node. The 
arcs are initially undirected. In Figure 2 the n 
nodes are positioned in such a way that they 
form a polygon. If in a graph each node is 
connected to every other node, it is referred to as 
a clique or as a complete graph. 

A well-known graph coloring problem 
concerns the coloring of the arcs in a graph; the 
coloring has to be done in such a way that all the 
arcs that are linked to any given node have 
different colors and the total number of colors is 
minimized. It is a well-known fact that a clique 
with n nodes can be colored this way with n 
colors (which is often referred to as its 
chromatic number ). Each subgraph that receives 
a specific color consists of one arc that lies on 
the boundary of the polygon and a number of 
internal arcs (see Figure 2). 

 
Figure 2. Coloring of a complete graph 
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The equivalence between the graph coloring 
problem and the single round robin tournament 
scheduling problem is based on the fact that 
each round in the tournament corresponds to a 
subgraph with a different color. The coloring of 
the arcs for the different rounds thus determines 
a schedule for a single round robin tournament 
in which each team plays every other team only 
once. One question is how to partition the arcs 
into a number of subsets with each subset having 
a different color. A second question has to be 
addressed as well: when one team plays another 
it has to be decided at which one of the two sites 
the game is played, i.e., which team plays at 
home and which team will be away. In order to 
determine this, each arc in the graph has to be 
directed; if a game between teams i and j takes 
place at team j’s site, then the arc linking nodes i 
and j emanates from i and goes to j. In order to 
avoid breaks in two consecutive rounds of a 
schedule, the arcs have to be directed in such a 
way that the two subgraphs corresponding to the 
two consecutive rounds in the timetable 
constitute a so-called directed Hamiltonian path. 
A directed Hamiltonian path is a path that goes 
from one node to another with each node having 
at most one outgoing arc and at most one 
incoming arc. 

Many approaches for developing tournament 
schedules are based on a standard framework for 
the search for good feasible schedules. In this 
framework a pattern is equivalent to a string 
consisting of H’s, A’s, and B’s, for example 
HABAHHA. For a single round robin tournament 
the length of a string is n−1 (n) when the number 
of teams is even (odd). These strings are often 
referred to as Home Away Patterns (HAPs). The 
following three step algorithm provides a 

framework for generating single round robin 
schedules. 

Step 1 – Assemble a Collection of HAPs 
Find a collection of n different HAPs. 
This set of HAPs is referred to as the pattern 

set. 
Step 2 – Create a Timetable 

Assign a game to each entry in the pattern 
set. 

The resulting assignment is referred to as a 
timetable. 
Step 3 – Assign Teams to Patterns 

Assign a team to each pattern. 
Together with the timetable, this creates a 

single round robin schedule. 

A schedule for a double round robin 
tournament can be created in a similar fashion. 
First, a single round robin tournament schedule 
is generated. Then a fourth step is added, which 
is typically referred to as the mirroring step. The 
single round robin schedule is extended by 
attaching immediately behind it a schedule that 
is exactly the same but with the home and away 
games reversed. 

In practice, the framework described above 
is often used somewhat differently. In Step 1 
usually more than n different HAPs are 
generated and based on this larger collection of 
HAPs more than one pattern set is created. 
Additional pattern sets give more choices and 
flexibility in the creation of timetables and 
schedules. 

If the tournament under consideration has a 
large number of teams, then each step in the 
framework requires a certain computational 
effort. There are actually various approaches that 
can be used in each step. Each step can be 
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implemented following either an optimization 
approach or a constraint programming approach. 
The remaining part of this section describes the 
use of optimization techniques in each step of 
the framework. 

In Step 1 several pattern sets can be 
generated by first listing all the preferred 
patterns (with alternating H’s and A’s and one B) 
of appropriate length. There may not be that 
many of such preferred patterns. A list of some 
of the less preferred patterns (say, with one or 
two breaks) is created as well. It is not likely 
that a set that consists only of preferred patterns 
will ultimately lead to an acceptable schedule. 
Because of this, additional pattern sets are 
created that contain, for example, n–2 preferred 
patterns and two patterns that are less preferred. 
If we allow only a small number of less 
preferred patterns in a pattern set, then the 
number of pattern sets that can be generated is 
still relatively small. 

Step 2 creates timetables for different teams. 
Determining the timetables can also be done 
through integer programming. It is clear that 
every pattern in each one of its rounds is linked 
to another pattern. Let S denote a set of n 
patterns and let T denote the set of rounds. The 
binary variable k tx



 is 1 if the team associated 
with pattern k plays at the site of the team 
associated with pattern   in round t. Of course, 
this variable is only defined if the kth pattern has 
an A in position t and the  th pattern has an H 
in position t. Let F denote the set of all feasible 
( , , )k t  triplets. In order to find for a single 
round robin tournament a solution that satisfies 
all the constraints the following integer program 
can be formulated. 

Minimize 
( , , )
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The first set of constraints specifies that 
during the tournament there will be exactly one 
game between teams represented by patterns k 
and  . The second set of constraints specifies 
that pattern k plays at most one game in round t. 
(In a single round robin with an even number of 
teams this inequality constraint becomes an 
equality constraint.) The objective function for 
this integer program is somewhat arbitrary, 
because the only goal is to find a solution that 
satisfies all constraints. 

Step 3 assigns teams to patterns. This step 
may in certain situations also be formulated as 
an integer program. Let iky  denote a 0 − 1 
variable taking value 1 if team i is assigned to 
HAP k and 0 otherwise. Let ikc  denote the 
relative cost of such an assignment (this relative 
cost is estimated by taking all stated preferences 
into account). A timetable for the competition 
can be constructed as follows. 

Minimize 
1 1

n n

ik ik
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Of course, each team is assigned to one HAP 
and each HAP is assigned to one team. In 
practice, the mathematical program formulated 
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for Step 3 is often more complicated. It is 
usually of a form that is referred to as a 
Quadratic Assignment Problem. 

This approach, in which each step is based 
on an integer programming technique, has been 
used in a case discussed by Nemhauser and 
Trick (1998): The Atlantic Coast Conference 
(ACC) is a group of nine universities in the 
southeastern United States that compete against 
each other in a number of sports. From a 
revenue point of view, the most important sport 
is basketball. Most of the revenues come from 
television networks that broadcast the games and 
from gate receipts. The tournament schedule has 
an impact on the revenue stream. Television 
networks need a regular stream of quality games 
and spectators want neither too few nor too 
many home games in any period. 

There are numerous restrictions in the form 
of pattern constraints, game count constraints, 
and team pairing constraints. The patterns of 
Home games and Away games is important 
because of wear and tear on the teams, issues of 
missing class time, and spectator preferences. 
No team should play more than two Away games 
consecutively, nor more than two Home games 
consecutively. A Bye is usually regarded as an 
Away game. Similar rules apply to weekend 
slots (no more than two at Home in consecutive 
weekends). 

This type of scheduling problem can also be 
solved using a constraint programming approach. 
As far as Steps 1 and 2 are concerned, the 
computational effort needed using a constraint 
programming approach seems to be comparable 
to the computational effort needed using an 
integer programming approach. However, as far 
as Step 3 is concerned the constraint 

programming technique seems to have a clear 
edge. Since the integer programming approach 
in Step 3 is basically equivalent to complete 
enumeration, it is not surprising that constraint 
programming can do better, see Schaerf (1999), 
Aggoun and Vazacopoulos (2004), Henz et al. 
(2004). 

In addition to mathematical programming 
and constraint programming techniques, many 
researchers have experimented with heuristic 
techniques as well, see Anagnostopoulos (2003), 
Hamiez and Hao (2001), Schonberger et al. 
(2004). 

A significant amount of academic research 
has also focused on finding good solutions for 
tournaments of specific types, namely in soccer 
leagues as well as in other leagues; see, for 
example, Schreuder (1992), Henz (2001), 
Bartsch et al. (2004). 

6.2 Network Broadcast Scheduling 
Scheduling of network television programs, 

even though different in various respects from 
interval scheduling and tournament scheduling, 
does exhibit a number of similarities with both 
interval scheduling and tournament scheduling. 
The scheduling horizon is typically one week 
and the week consists of a fixed number of time 
slots. A number of shows are available for 
broadcasting and these shows have to be 
assigned to the different time slots in such a way 
that a certain objective function is optimized. 
Moreover, the assignment of shows to slots is 
subject to a variety of conditions and constraints. 
For example, assigning a show to one slot may 
affect the contribution to the objective function 
of another show in a different slot. The integer 
programming formulations are somewhat similar 
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to the integer programming formulations for 
interval scheduling and tournament scheduling. 

Major television networks typically have a 
number of shows available for broadcasting. 
Some of these belong to series of half hour 
shows, while others belong to series of one hour 
shows. There are shows of other lengths as well. 
There are a fixed number of 30 minute time slots, 
implying that some shows require one time slot, 
while others need two consecutive time slots. If 
a particular show is assigned to a given time slot, 
then a certain rating can be expected. The 
forecasted ratings may be based on past 
experience with the show and/or the time slot; it 
may be based on lead-in effects due to the shows 
immediately preceding it, and it may also be 
based on shows that competing networks assign 
to that same slot. The profits of the network 
depend very much on the ratings and one of the 
main objectives of the network is to maximize 
its average ratings. 

If the length of program j is exactly half an 
hour, then the binary decision variable jtx  is 1 
if program j  is assigned to slot t; if the length 
of program j is longer than half an hour, then the 
decision variable jix  is 1 if the first half hour of 
program j is assigned to slot t (i.e., broadcasting 
program j may require both slots t and t+1, but 
only the decision variable associated with slot t 
is 1 while the one associated with slot t+1 
remains zero). Let jtπ  denote the total profit (or 
the total ratings) obtained by assigning program 
j to time slot t. If program j occupies more than 
one slot, then jtπ  denotes the profit generated 
over all slots the program covers. Let A denote 
the set of all feasible assignments (j, t). Let the 
binary variable jtvb  be 1 if time slot v is filled 
by program j or by part of program j because of 

the assignment (j, t) and 0 otherwise. Clearly, 
1jttb =  and jtvb  can only be nonzero for v t> . 

The following integer program can be 
formulated to maximize the total profit. 

Maximize 
( , )

jt jt
j t A

xπ
∈
∑   

subject to 

:( , )
1jt

t j t A
x

∈
≤∑     for 1, ,j n=    

( , )
1jt jtv

j t A
x b

∈
=∑   for 1, ,v H=    

{0,1}jtx ∈       for ( , )j t A∈   

This integer program takes into account the 
fact that there are shows of different durations. 
However, the formulation above is still too 
simple to be of any practical use. One important 
issue in television broadcasting revolves around 
so-called lead-in effects. These effects may have 
a considerable impact on the ratings (and the 
profits) of the shows. If a very popular show is 
followed by a new show for which it would be 
hard to forecast the ratings, then the high ratings 
of the popular show may have a spill-over effect 
on the new show; the ratings of the new show 
may be enhanced by the ratings of the popular 
show. Incorporating lead-in effects in the 
formulation described above can be done in 
several ways. One way can be described as 
follows: let ( , , , )j t k u  refer to a lead-in 
condition that involves show j starting in slot t 
and show k starting in slot u. Let  denote the 
set of all possible lead-in conditions. The binary 
decision variable jtkuy  is 1 if in a schedule the 
lead-in condition ( , , , )j t k u  is indeed in effect 
and 0 otherwise. Let jtkuπ ′  denote the additional 
contribution to the objective function if the 
lead-in condition is satisfied. The objective 
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function in the formulation above has to be 
expanded with the term 

( , , , )
jtku jtku

j t k u
yπ

∈

′∑


 

and the following constraints have to be added: 
0jtku jty x− ≤   for ( , , , )j t k u ∈   

0jtku kuy x− ≤   for ( , , , )j t k u ∈  

1jtku jt kuy x x− + + ≤   for ( , , , )j t k u ∈   

{0,1}jtkuy ∈   for ( , , , )j t k u ∈   

The first set of constraints ensures that jtkuy  can 
never be 1 when jtx  is zero. The second set of 
constraints is similar. The third set of constraints 
ensures that jtkuy  never can be 0 when both jtx  
and kux  are equal to 1. 

A fair amount of research has been done 
over the years focusing on the scheduling of 
network television programs, see Horen (1980), 
Reddy, Aronson and Stam (1998), and Hall, Liu, 
and Sidney (1998). Actually, research attention 
has also focused on the scheduling of 
commercials in broadcast networks, see 
Bollapragada, Bussieck, and Mallik (2004), 
Bollapragada, Cheng, Phillips, Garbiras, Scholes, 
Gibbs, and Humphreville (2002), and 
Bollapragada and Garbiras (2004). 

7. Conclusions 
It is clear that scheduling plays a very 

important role in many service industries. As 
stated earlier, scheduling problems in practice 
may be either static or dynamic. The static 
problems are very similar to the so-called 
off-line scheduling problems studied in the 
academic literature; the dynamic scheduling 
problems are often similar to either the online 
scheduling problems or the stochastic 

scheduling problems analyzed in the literature. 
Most of the problems that have received 
attention in the research literature, and that are 
discussed in this tutorial, are of the static 
deterministic type. The main reason is that these 
problems are somewhat easier to analyze. 
However, even though these problems are easier 
to analyze than their dynamic counterparts, they 
are still, more often than not, NP-Hard. 

Static deterministic problems can often be 
formulated relatively easily as mathematical 
programs (in particular, as Mixed Integer 
Prorams or MIPs) and the typical solution 
techniques most often used for such integer 
programs are Branch-and-Bound and Cutting 
Plane methods. Static deterministic scheduling 
problems can at times also be formulated as 
constraint programs. If that is the case, they can 
be solved using standard constraint 
programming techniques, see Goltz and Matzke 
(2001). We have also seen that a variety of static 
deterministic scheduling problems (including 
timetabling, interval scheduling, reservation 
problems, and tournament scheduling) are 
equivalent to graph theoretic node coloring 
problems, e.g., chromatic number, or arc 
coloring problems. If an equivalence can be 
shown between a static deterministic scheduling 
problem and a graph coloring problem (which 
usually is strongly NP-Hard), then a host of 
heuristics can be used that have been developed 
and analyzed in the graph theory and computer 
science literature. 

Many of the scheduling problems discussed 
in this tutorial have, in practice, either dynamic 
or stochastic aspects. One may be able to 
analyze such a more general problem as a 
Markov Decision Process (MDP), which one 
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may be able to formulate as a Linear Program 
(LP). However, the transformation of an MDP 
into an LP may bring about an explosion in the 
dimension of the problem. So, even though an 
LP may be solvable in polynomial time, since 
the transformation of the MDP into the LP is not 
polynomial, it is still very hard to solve the MDP. 
One also may be able to formulate a dynamic 
scheduling problem as an online scheduling 
problem. However, such a problem typically 
does not allow for an exact optimization 
technique. Research in such problems have led 
to interesting heuristics and hybrid techniques in 
practice. 

In scheduling applications in service 
industries, many different types of algorithms 
are in use, from the very simplistic to the very 
sophisticated. The more sophisticated techniques 
include algorithms for Mixed Integer 
Programming formulations, that are based on 
Branch-and-Bound and on Branch-and-Cut. 
These methods usually have as goal to find a 
very optimum solution. That is, they are applied 
when the data available for the problem are 
known with a high degree of certainty and it is 
worthwhile finding the best possible solution. 
Clearly, the amount of time required for 
developing the code as well as the computation 
time needed when running the code tend to be 
significant. Especially in the transportation 
industries these techniques are widely used. In 
other application areas, the use of heuristics is 
significantly more common. The heuristics 
include local search techniques, priority rules, as 
well as hybrid (decomposition) techniques that 
combine priority rules with local search. 

There is an entire industry dedicated to the 

development of decision support systems for 
scheduling applications in services. The 
development of such a decision support system 
is typically a major endeavour. The database and 
user interface requirements are usually quite 
elaborate. See, for example, in Figure 3 the user 
interface of a system developed by MultiModal 
Applied Systems for train scheduling.  

Moreover, such decision support systems 
typically have to allow for seamless interactive 
optimization. There are numerous software 
companies that are specializing in the 
development of software and decision support 
systems for the service industries. For example, 
Mimosa Scheduling Software markets a host of 
scheduling software applications for the 
academic and education markets. Their systems 
focus on teacher scheduling, classroom 
assignments, and so on. The Totalview System 
of the IEX Corp. is a system used to schedule 
the shifts of operators in call centers. The 
MultiRail System of MultiModal Applied 
Systems is a widely used decision support 
system for train scheduling. Jeppesen Systems, a 
unit of Boeing, develops decision support 
systems for the scheduling of aircraft and for 
crew scheduling. Galactix Software markets 
their Team Sports Scheduling System. Besides 
these more generic systems that are being 
marketed by the various software companies 
(systems that still may need a significant amount 
of customization upon installation), many purely 
application-specific systems have been 
developed as well. For example, the Bremen 
Public Transport Authority developed its own 
system, referred to as DISSY, in order to 
schedule its drivers. 
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Figure 3. User interface of decision support system for train scheduling 

 
Future research on scheduling in service 

industries may focus on hybrid and interactive 
techniques that are useful for systems 
implementations in practice, e.g., methods that 
combine constraint programming techniques 
with optimization techniques or local search 
techniques (such as genetic algorithms). 
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