
Bus service time estimation model for a curbside bus stop

Bomin Bian1

Institute of Systems Engineering, College of Management and Economics, Tianjin University, China

Ning Zhu1,∗

Institute of Systems Engineering, College of Management and Economics, Tianjin University, China

Shuai Ling1

Institute of Systems Engineering, College of Management and Economics, Tianjin University, China

Shoufeng Ma1

Institute of Systems Engineering, College of Management and Economics, Tianjin University, China

∗Corresponding author
Email addresses: bmbian@tju.edu.cn (Bomin Bian), zhuning@tju.edu.cn (Ning Zhu), lingshuai@tju.edu.cn

(Shuai Ling), sfma@tju.edu.cn (Shoufeng Ma)

Preprint submitted to Transportation Research Part C May 22, 2015



Abstract

The bus service time at bus stop areas occupies a large proportion of the total on-road bus oper-

ational time. Curbside bus stops are very common in urban transit systems, and the occurrence of

bus queues forming at the entry and departure area of bus stop is quite frequent. To estimate the

service time at a curbside bus stop, a compound Poisson service time estimation model (CPSTM) is

proposed. The CPSTM considers the interactions among arriving buses and number of boarding and

alighting passengers. Realistic observational data are acquired for a representative bus stop. Four

different scenarios are presented to estimate the total expected service time. The service time esti-

mation of each bus line is obtained via the CPSTM, and the effectiveness of the proposed CPSTM is

demonstrated. The results show that the employment of real-time data is not required for accurate

service time estimation.
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1. Introduction

With the severe congestion in urban transportation system, calls are increasing for a switch from
private cars to public transit. Bus on-road travel time is an important measure of the performance
of bus systems and, in general, this has two main components: the vehicle running time and service
time at bus stops (Levinson (1983); Rajbhandari et al. (2003)). Bus stops are a major access point to
the transit system and service time represents a significant proportion of the total bus on-road travel
time (Lin and Wilson (1992); Lin and Bertini (2010)). It is fairly common in any country for a large
number of bus lines to converge on a single bus stop. Particularly in high demand areas, curbside bus
stops are frequent, despite the limited road space there. In addition, due to variations in on-road travel
time and the difficulty of controlling a scheduled headway, the phenomenon of queuing is commonplace
and often delays the service time at a bus stop. It is necessary, therefore, to propose a method for
estimating service time in view of this queuing. Research into service time at bus stops is beneficial
in several transit applications. Service time estimation could help in the estimation and prediction
of bus travel time (Furth and Muller (2007)), and arrival and departure time forecasts of intelligent
transportation systems could become more precise if service time at bus stops is modeled (Shalaby
and Farhan (2004); Yu et al. (2011)). Service time estimation are vital to daily operations, such as
bus scheduling (Petersen et al. (2012); Ceder (2011)) and headway control (Sun and Hickman (2008);
Delgado et al. (2012)). Moreover, bus service time estimation plays an vital role in transit network
design (Cipriani et al. (2011);Bagloee and Ceder (2011); Yu et al. (2012); Wu et al. (2015); Zhang
et al. (2014); Yao et al. (2014); Amiripour et al. (2014); Nayeem et al. (2014)) and transit assignment
analysis (Szeto et al. (2011); Hamdouch et al. (2011);Leurent et al. (2014)).

A number of factors have been shown to impact the amount of time buses spend at the bus
stop areas, denoted as the bus dwell time. These factors are the number of boarding and alighting
passengers, the number of berths of the bus stop, fare collection system, bus types, etc. One of the
well-studied factors is that of the number of boarding and alighting passengers. Various regression
models have been developed to describe the relationship between the number of passengers and the
bus dwell time. Linear regression and natural logarithm models have been respectively presented by
Levinson (1983) and Guenthner and Sinha (1983) to estimate bus dwell time. Linear and nonlinear
estimation of crowding effects have been examined (Lin and Wilson (1992)). These models show the
importance of the number of passengers on the dwell time estimation.

In addition to the number of boarding and alighting passengers, the effects of standees, vehicle
types, fare collection systems, etc. have also been considered in the estimation of the bus dwell time.
For example, the effects of standees and the time of the day on the bus dwell time were investigated
(Rajbhandari et al. (2003)). Jaiswal et al. (2010) studied the influence of platform walking on the
bus dwell time at a bus rapid transit station and developed a linear regression model that not only
considered the number of boarding and alighting passengers but also considered the bus lost time
caused by waiting the first boarding passenger walking to the bus. Guenthner and Hamat (1988);
Levine and Torng (1994), Milkovits (2008) and Tirachini (2013) estimated the dwell time using some
secondary factors such as fare collection methods and bus types, which were employed as variables
to obtain a regression model. Meng and Qu (2013) provided a new effective mathematical approach
for estimation of the bus dwell time, and presented a probabilistic model to describe the dwell time
incurred when a bus remains in the bus bay in anticipation of a suitable time gap to depart. Most of
the aforementioned studies focused on the dwell time in the bus bay area.

Intuitively, there are two processes going on during bus service time at stops (Fernandez (2010)).
One is passengers’ boarding and alighting process. The other is the buses arrival process which can
potentially form a queue of buses at the stop area. Due to different numbers and functions of bus
doors, the service time of passengers’ boarding and alighting varies (Fernandez and Planzer (2002)).
The other part of the service procedure is the time taken for buses to enter and leave the service area.
Bus travel time is highly variable in a congested environment. Normally, there is a timetable for buses
leaving the terminus, but, headway is difficult to control at each stop. Therefore, a congested traffic
environment leads to a bunching phenomenon and a great deal of queuing, with buses tending to arrive
in groups and cause delays for others entering the area of the stop (Strathman et al. (2000); Tirachini
and Hensher (2011); Tirachini (2013)).
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In general, there are five main reasons for the queuing phenomenon at bus stop areas. (i) Passengers
waiting at the bus stop areas normally form a disordered crowd, which increases the delay, as shown
in Fig. 1(a). This part of service time is the passengers’ boarding and alighting time. (ii) Numerous
bus lines (perhaps 5-20 lines, as shown in Fig. 1(b)) may operate through a single bus stop area, so,
it is inevitable that a number of buses will enter the curbside bus stop area simultaneously, as shown
in Fig. 1(c). (iii) The number of service berths of the curbside bus stop is limited. A single bus stop
cannot simultaneously accommodate multiple buses, as shown in Fig. 1(d). (iv) Irregular headway
and headway variations increase the possibility of bunching. (v) Complicated traffic conditions (e.g.
needing to wait for a suitable gap to merge back into the main traffic stream (Meng and Qu (2013))
may increase service time. Observations indicate that only two or three buses can provide service
simultaneously. Curbside bus stops are very common all over the world. Recently, there have been
limited studies focusing on bus queue related problems. A berth assignment model is proposed that
considers a bus stop shared among multiple bus lines (Tan et al. (2014)). A Markov chain based model
is proposed to estimate the maximum number of arriving buses at a given bus stop (Gu et al. (2014)).

As to the analytical tool for bus stop capacity analysis, a good example is the Highway Capacity
Manual formula (TRB (2013)). This connects the number of berths and the stop capacity (Vuchic
(2005)) but its simplicity acts as a disadvantage as it can not precisely capture the queuing situation.
On the other hand, because of the complexity of interaction among passengers, buses and bus stop
layout (Gibson et al. (1989)), it is difficult to invent a closed-form expression to reflect these realistic
phenomena. Therefore, simulation tools are widely used (Fernandez and Planzer (2002); Fernandez
(2010); Gibson et al. (1989); Tyler et al. (2002)Rexfelt et al. (2014)). It is necessary to develop a new
model to estimate bus service time at curbside bus stops that considers the commonly experienced
queuing phenomenon.

[Figure 1 about here.]

The remainder of this paper is organized as follows. Section 2 provides a description of the bus
stop area considered herein and the data collection and processing employed. In section 3, we present
a new model that is based on a compound Poisson process to describe the service time at a curbside
bus stop. A numerical experiment and calculation results and analysis are given in section 4 and 5,
respectively. Section 6 concludes the paper.

2. Description of bus stops and data

2.1. Bus stop description

The curbside bus stop is the most common type of bus stop all over the world. The structure of
a typical curbside bus stop is shown in Fig. 2. The area inside the blue dashed lines is the service
area. This study specifies the number of berths as 2 because this is the most commonly observed berth
number based on our observations. This indicates that buses residing outside the service area must
wait before the service can be provided.

Moreover, a “no overtaking rule” is imposed as an assumption. This assumes that no bus in a
queue can be overtaken by buses further back in the queue. The reason for this assumption is that
(i) the space of the service area is insufficient to allow such a maneuver; and (ii) the maneuver would
affect traffic flow in the other lanes and may cause accidents.

[Figure 2 about here.]

The process of bus service at stops can be described as the following steps:

(1) The entering bus is positioned in the lane that contains the curbside bus stop.

(2) The speed of the bus is reduced while approaching the bus stop service area and the queuing
phenomenon may occur due to possibly happened service of forward buses at the same time.

(3) Upon entering the service area, the front and rear doors are opened for passengers boarding and
alighting.
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(4) Passengers in the bus adjust their positions, and the front and rear doors are closed.

(5) The bus attempts to leave the bus stop area and enter traffic, where delays may occur because
of the possibly happened service of forward buses simultaneously.

(6) The bus merges into the main traffic flow.

2.2. Data collection and processing

To estimate the bus dwell time under conditions of queuing at the bus stop area, an actual curbside
bus stop was subjected to observation and evaluation. A total of nine different bus lines operate through
the observed bus stop located on the Anshanxi Road in the Nankai district, Tianjin, China. A digital
camera was used to record the bus dwell times occurring during service periods. The duration of the
record was from 15:00 to 16:20 every weekday in April 2014 which was non-peak hour. A total of 282
records were obtained with an average of 32 records for each bus line. All these records provide the
authentic service time information.

Collected data are analyzed manually by three master students and cross validation are conducted
to guarantee that all input data are consistent. Input data are extracted from the video based on the
event sequence illustrated in Fig. 3. Several sample records are as following(Table 2):

[Table 1 about here.]

For all bus lines, totally 895 arrival records are analyzed. There are peak and non-peak hour data for
each bus line. 18 groups of arrival data are used to justify the Poisson process assumption(McClave and
Sincich (January 6, 2012)). 17 of total 18 groups passed the test. 12 out of 18 groups of data for inter-
arrival times series passed exponential distribution. In addition, assumption of Poisson distribution
has been widely employed(Danas (1980); Kohler (1991); Ge (2006); Gu and Cassidy (2013); Tirachini
(2013)). Thus, we made the assumption of Poisson distribution.

3. Model description

3.1. Basic model and compound Poisson service time model (CPSTM)

In general, the buses that service in Tianjin usually have two doors. The front door is only used for
boarding and the rear door only is for alighting. The bus design is fairly common all over the world.
The service time estimation model based on the European experiences, which was proposed by Pretty
and Russell (1988), is treated as the basic model in the present study. This model considers only the
numbers of boarding and alighting passengers and the dead time.

T = C +max{

m
∑

h=1

ah,

n
∑

q=1

bq}, (1)

where:
T is the bus dwell time at the bus stop;
ah is the consumed time of each passenger h for boarding;
bq is the consumed time of each passenger q for alighting;
m is the number of boarding passengers;
n is the number of alighting passengers;
C is the dead time for opening and closing doors.
To ease the description of the notation system, we also provide a notation table of CPSTM in A.
Typically, there are two types of time delay that may occur at a curbside bus stop. In step (2)

described above, a bus can enter the service area only if there is sufficient space. Otherwise, the bus
must wait. The waiting time at the point of entry is the first type of time delay. The second type
of delay may occur at step (5) with a similar logic. These two types of delays are partially caused
by limited number of berths. At the same time, two other conditions have to be satisfied that are (i)
forward berths are also occupied and (ii) the no overtaking rule is applied. Cases where the first bus
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is still boarding and/or alighting passengers while the second bus waits was often observed. Based on
the above observations, the service time formulation is revised as follows:

Ts = Td + Tm, (2)

where:

Td = C +max{

m
∑

i=1

ah,

n
∑

j=1

bq}+ twe + twl = T + twe + twl, (3)

Tm = te + tl. (4)

Here, the definition of ah, bq,m, n and C are the same with equation (1)
Ts is the total service time at the bus stop;
Td is the dwell time in and/or out of the bus stop(including the waiting time for entering and/or

leaving the bus stop area);
Tm is the time wherein that buses move in and out of the bus stop;
twe is the time wherein buses wait to enter the bus stop;
twl is the time wherein buses wait to leave the bus stop;
te is the time wherein buses enter the bus stop;
tl is the time wherein buses leave the bus stop.
Moreover, the symbol “+” used as a superscript represents a forward bus. For example, T+

s

represents the total service time of the forward bus at a given bus stop. In addition, in the case of
a queue, T++

s indicates the total service time of the bus in front of the described forward bus at the
same bus stop. The variable tgap is denoted as the time difference between the start point of t+we and
the start point of twe of the current bus, as shown in Fig. 3. All the variables are non-negative.

[Figure 3 about here.]

3.2. Poisson process and compound Poisson process

Let N(t) donates the occurrence number of any event A until time t. If {N(t), t ≥ 0} satisfies the
following conditions:

(1) N(0) = 0;

(2) N(t) is an independent increment process;

(3) For N(t), the following two equations hold:

{

P{N(t+ h)−N(t) = 1} = λh+ o(h)
P{N(t+ h)−N(t) ≥ 2} = o(h),

(5)

then the stochastic process {N(t), t ≥ 0} is a Poisson process with constant intensity λ. During
any time period (0, t], if N(t) is a Poisson distribution of constant intensity λ, then

P{N(t+ s)−N(s) = n} = e−λt (λt)
n

n!
. (6)

It is assumed that {N(t), t ≥ 0} is a Poisson process and has a constant λ as a parameter. If
{Yk, k = 1, 2, · · · } is a set of independently and identically distributed random variables, and X(t) is
defined as:

X(t) =

N(t)
∑

k=1

Yk, t ≥ 0, (7)

we obtain that {X(t), t ≥ 0} is a compound Poisson process(Gallager (2013)).
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In our context, N(t) is the number of boarding passengers during time period (0, t]. As such,
Yk(k = 1, 2, · · · , N(t)) denotes the boarding time of the k−th passenger. For equation (7), X(t) is the
total boarding time of all passengers.

N(t) is a Poisson process with parameter λ and X(t) is a compound Poisson process, then for any
t and s ∈ [0,∞), s < t,

E(N(t) −N(s)) = D(N(t)−N(s)) = λ(t− s) (8)

and
E[X(t)] = λtE[Y1], (9)

D[X(t)] = λtE[Y 2
1 ] = λt(D[Y1] + (E[Y1])

2). (10)

Let N1(t) represents the number of buses that arrived at the curbside bus stop until time t. Tn(n ≥
1) represents the time interval between the arrival time of the (n− 1)−th bus and the arrival time of
the n−th bus. {Tn, n ≥ 1} is the time interval series associated with N1(t). The stochastic variable
Tn(n = 1, 2, · · · ) is independently and identically and is subject to the exponential distribution with
parameter λ. The mean value of Tn is 1/λ.

3.3. Probabilistic model for bus service time in bus stop area

To study the queuing phenomenon, we must set a proper number of berths for the curbside bus
stop in the CPSTM. The number of berths of a curbside bus stop mainly depends on its location
as well as nearby traffic conditions. Based on our observations, stops with the number of berths of
two are very common, whereas stops with the number of berths of three were only observed near the
central business district. In this paper, we assume that the number of berths of service area is two.
The results and conclusions can be extended to the value of three. As shown in Fig. 4(a), the service
area is divided into berth-1 and berth-2, and each berth can accommodate a single bus. Therefore, a
bus can encounter four different scenarios before moving into the service area. The occurrence of each
scenario is associated with a probability. The four scenarios are stated as follows.

Scenario A: the service area is empty, as illustrated in Fig. 4(a). The bus can freely enter the
service area and stop at berth-1. The bus can leave the service area immediately after service is
completed.

Scenario B: the service area is full and the bus must wait in the entry area, as illustrated in Fig.
4(b). There are two sub-scenarios. One is that the berth-1 bus completes its service earlier than the
berth-2 bus. Thus, the berth-1 bus leaves the bus stop area. The current bus must wait until the
berth-2 bus leaves. The other sub-scenario is that the berth-2 bus first completes its service. However,
the berth-2 bus must wait until the berth-1 bus leaves owing to the no overtaking rule. After the
berth-1 bus completes its service, both buses can leave, and the current bus can enter the service area
and stop at berth-1. Therefore, in scenario B, the current bus must wait until both front buses exit
the service area, although, after service, the current bus can exit without waiting.

Scenario C: a single bus resides in the service area in berth-2, as illustrated in Fig. 4(c). This
case is similar to scenario B, and the current bus again must wait to enter and stop at berth-1. The
bus can exit the service area immediately after its service is completed.

Scenario D: a single bus resides in the service area in berth-1, as illustrated in Fig. 4(d). In this
case, the current bus can stop at berth-2 directly without waiting. However, there are two scenarios
when the bus prepares to leave. If the berth-1 bus is still servicing, then the current bus must wait
because of the no overtaking rule. Otherwise, it can leave directly.

[Figure 4 about here.]

Of the four scenarios, the probability of each scenario was calculated. We assume J is the set of
bus lines that utilize the curbside bus stop. For each j ∈ J , the probability of a scenario’s occurrence
is as follows.
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Scenario A:

P j
A = P{tjgap ≥ T+

s }, (11)

Scenario B:

P j
B = P{t+j

gap < T++
s } × P{tjgap < T+

s }, (12)

Scenario C:

P j
C = P{t+j

gap ≥ T++
s } × P{tjgap < T+

s } × p∗, (13)

Scenario D:

P j
D = P{t+j

gap ≥ T++
s } × P{tjgap < T+

s } × (1 − p∗). (14)

Here, tjgap is the tgap of the current bus line j and t+j
gap is the t+gap of the current bus line j. For

scenario C and D, only one bus is in the service area. p∗ is defined as the probability of the single bus
is in berth-2 and 1− p∗ is the probability of a single bus at berth-1.

In these four probability models, only the current bus line is considered. The combined probability
P j
C + P j

D = P{t+j
gap ≥ T++

s } × P{tjgap < T+
s } represents the condition where only a single bus is

servicing at the bus stop.
Moreover,

P j
C + P j

D = P{t+j
gap ≥ T++

s } × P{tjgap < T+
s } =

P j
D

1− p∗
. (15)

Because a bus must stop at berth-2 for scenario D, we have

∑

j

P j
D = p∗. (16)

Then

∑

j

(P j
C + P j

D) =

∑

j P
j
D

1− P ∗
=

p∗

1− p∗
. (17)

Because
∑

j(P
j
C + P j

D) can be determined from collected data, p∗ can be obtained.
For any j ∈ J , we assume the number of coming j buses during time period (0, t] is Nj(t), and

that {Nj(t), t ≥ 0} is a Poisson process with parameter λj . The series {t
j
gap} and {t+j

gap} are subject to
the exponential distribution with parameter λj . The mean value of tgap and t+gap are both 1/λj. The
probabilities of the different scenarios can then be calculated by the exponential distribution.

3.4. Description of the bus service time for different scenarios

In addition to the probability of each scenario, Ts is different for different scenarios. We assume
that the length of a typical bus is L. The processes of a bus accelerating to leave and decelerating
to enter can be seen as uniform variable motion (we assume that the acceleration and deceleration
are constant), and the speeds are given as vl and ve respectively. Meanwhile, the boarding passenger
time and alighting passenger time are both compound poisson processes with parameters µj

a and µj
b

respectively, and ya and yb represent the respective mean value time values of alighting and boarding
passengers. The values vl, ve, ya, yb are constant for all j ∈ J . For any j ∈ J , based on the four
scenarios described before, T j

s can be further computed as follows.
Scenario A:

tjwe = tjwl = 0, tje =
L

ve
, tjl =

L

vl
, (18)

then

T j
sA = C +max{µj

at
j
gapya, µ

j
bt

j
gapyb}+

L

ve
+

L

vl
. (19)
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Scenario B:

tjwl = 0, tje =
2L

ve
, tjl =

L

vl
, (20)

tjwe = t+we + t+e + T+ + t+wl − tjgap = (t+we + t+e + T+ + t+wl + t+l )− t+l − tgap

= T+
s −

L

vl
− tgap,

(21)

then

T j
sB = C +max{µj

at
j
gapya, µ

j
bt

j
gapyb}+ T+

s +
2L

ve
− tgap. (22)

Scenario C:

tjwl = 0, tje =
2L

ve
, tjl =

L

vl
, (23)

tjwe = t+we + t+e + T+ + t+wl − tjgap = (t+we + t+e + T+ + t+wl + t+l )− t+l − tgap

= T+
s −

L

vl
− tgap,

(24)

then

T j
sC = C +max{µj

at
j
gapya, µ

j
bt

j
gapyb}+ T+

s +
2L

ve
− tgap. (25)

Scenario D:

tjwe = 0, tje =
L

ve
, (26)

tjwl =

{

0 tjwe + tje + T + tgap ≥ t+we + t+e + T+ + t+wl

t+we + t+e + T+ + t+wl − tjwe − tje − T − tjgap tjwe + tje + T + tgap < t+we + t+e + T+ + t+wl

(27)

t+we + t+e + T+ + t+wl − tjwe − tje − T − tgap = T+
s −

L

ve
−

L

vl
− T − tgap, (28)

accordingly,

tjl =

{

L
vl

tjwl = 0
2L
vl

tjwl 6= 0,
(29)

then

T j
sD = C +max{µj

at
j
gapya, µ

j
bt

j
gapyb}+

L

ve
+ tjwl + tjl . (30)

T j
sB and T j

sC are defined according to equation (22) and (25), but their meanings are different
depending on the scenario. In scenario B, the t+wl is nonnegative because the front bus in berth-2 may
wait to leave; and, in scenario C, t+wl is 0 because only a single bus resides in the service area.

To estimate the service time of a specified bus line at a curbside bus stop, the mathematical
expectation is calculated as follows:

T j
s =

∑

i

pjiT
j
si, i ∈ {A,B,C,D}, j ∈ J. (31)
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3.5. Summary of CPSTM and basic model

All parameters in CPSTM may be extracted from historical data, therefore, it can be regarded
as an offline model. Most of these parameters are constant, such as C, ya, yb, L, ve, vl. Others are
critical in obtaining good estimation performance, such as µa, µb, λj , tgap, t

+
gap. µa, µb and λj should

be updated in terms of different time intervals, say peak hour and non-peak hour.
A weakness of the basic model, is that it requires the number of boarding and alighting passengers,

which is not easy to obtain in reality. In CPSTM, the number of passengers is not needed; instead,
the rate of passenger arrival is used and obtainable from historical data, for example the transit fare
system. The other weakness of the basic model is that it does not explicitly consider queueing which
has a significant impact on bus service time.

4. Service time calculation

4.1. Calculation of the bus arrival rate

The curbside bus stop of interests contains nine bus lines. These 9 bus lines are No. 45, No. 50,
No. 633, No. 662, No. 678, No. 842, No. 851, No. 859 and No. 879. The line set of this bus
stop is then denoted as J = {45, 50, 633, 662, 678, 842, 851, 859, 879}. There are nine associated bus
arrival rates λj that also serve as the parameters used for calculating the time interval series {tjgap}

and {t+j
gap}. Moreover, we define λ0 as the total bus arrival rate of the curbside bus stop and {t0gap}

is the corresponding time interval series. λj is calculated according to the arrival record of bus line
j while λ0 is calculated by the arrival record of all nine bus lines together. The results are presented
in Table 3. The obtained arrival rate can be used for the computation of average passengers’ waiting
time, the prediction of bus arrival time and the computer simulation for generating bus.

[Table 2 about here.]

4.1.1. Probability of different scenarios

To calculate the mathematical expectation of T j
s for each j ∈ J , pji and T j

si, i ∈ {A,B,C,D}

should be computed first, which is given in equation (31). P j
i is calculated according to the following

equations.

P j
A = P{tjgap ≥ T+

s } = 1−

∫ T+
s

0

λje
−λjtdt. (32)

P j
B = P{t+j

gap < T++
s } × P{tjgap < T+

s } =

∫ T++
s

0

λje
−λjtdt×

∫ T+
s

0

λje
−λjtdt. (33)

P j
C = P{t+j

gap ≥ T++
s } × P{tjgap < T+

s } × P ∗ = (1−

∫ T++
s

0

λje
−λjtdt)×

∫ T+
s

0

λje
−λjtdt× p∗. (34)

P j
D = P{t+gap ≥ T++

s }×P{tgap < T+
s }× (1− p∗) = (1−

∫ T++
s

0

λje
−λjtdt)×

∫ T+
s

0

λje
−λjtdt× (1− p∗).

(35)
Here, T+

s and T++
s are two unknowns, which are also our estimation targets. They are obtained

from historical data.
We define T 0

s as the mean service time of all buses that pass through the curbside bus stop, T j
s

(j ∈ J) as the mean service time of bus line j and nj is the occurrence number of bus line j. Let
N =

∑

j∈J

nj , then

T 0
s =

∑

j∈J

njT
j
s

N
, (36)
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and

T++
s = T+

s + t+gap − tgap = T+
s + t0gap. (37)

The real data of t0gap is replaced by the mathematical expectation E[t0gap] as follows:

T++
s = T+

s + E[t0gap] = T+
s +

1

λ0
. (38)

4.1.2. Bus service time for different scenarios

As for the bus service time for different scenarios, some parameters should be preprocessed. The
deadtime C, bus length L, bus speeds vl and ve, and per passenger alighing/boarding times ya and yb
are all constant and calculated based on historical data. The values of all these constants are listed in
Table 4. The time interval tgap and tjgap are both replaced by the mathematical expectation E[tjgap]

since they are all time interval of current bus j. However, for some scenarios, the E[tjgap] is greater

than T+
s , and thus, causes some negative parameters such as tjwe for scenario B. Therefore, nonnegative

constrains are added to avoid negative parameters.
Scenario A: For scenario A, there are no nonnegative constraints problem.
Scenario B:

tjwe = t+we + t+e + T+ + t+wl − tgap = max(0, T+
s −

L

vl
− E[tjgap]). (39)

Scenario C:

tjwe = t+we + t+e + T+ + t+wl − tgap = max(0, T+
s −

L

vl
− E[tjgap]). (40)

Scenario D:

tjwl =

{

0 tjwe + tje + T + tgap ≥ t+we + t+e + T+ + t+wl

max(0, T+
s − 2L

v
− T − E[tjgap]) tjwe + tje + T + tgap < t+we + t+e + T+ + t+wl.

(41)

x

[Table 3 about here.]

4.1.3. Calculation of T j
s

As described in Section 4.1.1, we use T 0
s , which is initially obtained from historical data, to replace

T+
s (= T 0

s ) and T++
s (= T 0

s + 1
λ0
) for calculating the probabilities of different scenarios and then for

calculating T j
s . However, the T j

s is our estimation target, and T+
s as well as T++

s also depends on
T j
s . The estimation results may not be accurate. Therefore, an iterative algorithm for accurately

computing T j
s (j ∈ J) is designed1.

The process of the iterative algorithm is given as follows.

Step 1: set k = 0, T j
s and T 0

s are calculated based on historical data; set T j
s = T j

s,k and T 0
s = Ts,k.

Step 2: Ts,k is used to replace T+
s and Ts,k + 1

λ0
is used to replace T++

s ; thus, T j
s,k+1 and Ts,k+1

can be calculated accordingly.
Step 3: if T j

s,k = T j
s,k+1, stop; otherwise, set k = k + 1 and go to step 2.

The computational results are listed in Table 5.

[Table 4 about here.]

[Figure 5 about here.]

1That stable bus service time estimations can be obtained by iteration shall be demonstrated in B
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The computation converges to a solution very quickly, as shown in Fig. 5. By jointly utilizing
scenarios probability and service time of each scenario, a bus online schedule model and headway
control strategy may be proposed based on this calculation.

5. Model evaluation, comparison and discussion

5.1. Model performance evaluation

To evaluate the performance of the CPSTM, three error measurements are computed: the mean
absolute error, root mean squared error, and mean relative error. These three errors are defined as
follows.

Mean absolute error (εjmean):

εjmean =
1

nj

nj
∑

i=1

| T j
s − T j

(i,s) | . (42)

Root mean squared error (µj
mean):

µj
mean =

√

√

√

√

1

nj

nj
∑

i=1

(T j
s − T j

(i,s))
2. (43)

Mean relative error (εjrmean):

εjrmean =
1

nj

nj
∑

i=1

| T j
s − T j

(i,s) |

T j

(i,s)

. (44)

Here:
T j
s is the estimated service time of bus line j;

T j

(i,s) is the observed service time of the ith bus of line j.

The error measurements of the CPSTM are listed in Table 6.

5.2. Performance comparison of CPSTM and basic model

To compare the effectiveness of the basic model and our proposed CPSTM, error measurements
for the basic model are also computed. In the calculation process of the CPSTM, the parameters C,
λj , µ

j
a, µ

j
b, ya and yb are computed from historical data. The values for L, ve and vL are obtained

from observations. In the basic model, the values of C + max{
∑m

i=1 ah,
∑n

j=1 bq} are from field. As
to Tm which is the time spent moving in and out of the bus stop. It is not considered in basic model.
The reason is that, in basic model, the dwell time is counted between the time of opening doors after
stopping and closing them after last passenger getting on. The error measurements of the basic model
are listed in Table 7. Moreover, the differences between error measurements of the two models are
listed in Table 8.

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

As shown in Table 6, the mean absolute errors and root mean squared errors of the CPSTM are
no more than 5.82 s and 6.81 s, which are acceptable for actual applications. The mean relative errors
of the CPSTM ranges from 15.1% to 32.1%. For the errors of the basic model, which are listed in
Table 7, the mean absolute errors are no less than 7.44 s while the root mean squared errors are larger
than 7.47 s and the mean relative errors are as large as 63.5%. Table 8 reflects the differences of error
measurements of the basic model and the CPSTM. The three types of error measurements of the basic
model are considerably larger than those of the CPSTM obviously except for route No. 851 in which
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the three errors of the basic model are only slightly larger than those of the CPSTM. The obvious
differences reflect that the queuing time at the bus stop area can increase the estimation errors of the
bus service time a great deal, and that ignoring the queuing phenomenon may reduce the effectiveness
of the estimation. The results in Table 8 reflect that the accuracy as well as the credibility of the
CPSTM is much better than the basic model.

5.3. Estimation of service time with observed tgap, t
+
gap and tjgap

To further evaluate our model, the observed values of tgap, t
+
gap, and tjgap, which were previously

replaced by the mathematical expectation in Tsi, i ∈ A,B,C,D of the CPSTM , were employed to
obtain new estimation results. Then, we compared the three error measurements, and the results are
listed in Table 9.

[Table 8 about here.]

[Table 9 about here.]

Like Table 8, Table 10 is employed to compare the performances of the CPSTM and the CPSTM
in conjunction with the observed data. In the CPSTM, the values of tgap and t+gap are the critical data

for estimating the queuing time, and tjgap is used to estimate the number of boarding and alighting
passengers. From a theoretical perspective, these data are able to improve the estimation accuracy.
The differences of errors shown in Table 10 are small, which indicates that the performances of the
CPSTM with and without the observed data are nearly equivalent. Based on this observation, E[tjgap]
can be used for service time estimation and real-time data are not necessary. Based on the results
shown in Table 8 and Table 10, the CPSTM is effective for estimating the bus service time for the
curbside bus stops. The results show that a reasonable good estimation accuracy can be achieved
without using any real-time data. This is quite useful for both the off-line and on-line bus schedule.
In addition, the results can also be applied for headway control and bus holding strategy design.

5.4. Impact of overtaking

Based on our observed bus stop, the occurrence of overtaking is very rare. However, it happened
occasionally for other bus stops. In this section, the impact of overtaking is examined. Overtaking
means that the current bus overtakes forward bus either for entering the vacant berths or leaving the
bus stop. To ease the analysis of overtaking, we assume that the coming bus overtakes servicing buses
homogenously and with a fixed probability.

The overtaking analysis starts from the four scenarios shown in Fig. 6. For scenario A, since there
is no buses in the stop area, the overtaking problem does not exist. This is named scenario E.

Scenario F: there are three possible scenarios deriving from scenario B assumed the occurrence of
overtaking. (i) Berth-1 bus completes its service before berth-2 bus. Then, the coming bus overtakes
berth-2 bus and stops at berth-1 position (see Fig. 6(a)). (ii) Berth-2 bus finishes its service before
berth-1 and it overtakes berth-1 bus, then the current bus goes to berth-2. It becomes scenario D. (iii)
Similar with (ii), after berth-2 bus overtakes berth-1 bus, the current bus overtakes berth-1 bus when
it departs before berth-1 bus (see Fig. 6(b)).

Scenario G: based on scenario C, the coming bus overtakes berth-2 bus and provide service in
berth-1 position. The current bus can discharge from the bus stop area after it completes its service
(see Fig. 6(c)).

Scenario H: in terms of scenario D, there is a single bus residing the berth-1. The current bus
can stop at berth-2 directly and overtakes the berth-1 bus if it finishes its service before berth-1 bus
(see Fig. 6(d)).

[Figure 6 about here.]

To evaluate the impact of overtaking, a mathematical analysis is provided for the service time
estimation of each extended scenarios and its probability of occurrence (see C). The service time of
each scenario and its presence probability is seen as given. The time difference between no overtaking
and overtaking with a specific probability is given in equation (62) and denoted as ∆T . There are
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two probabilistic variables for depicting the overtaking phenomena. One is the probability that the
berth-1 bus finishes its service earlier than berth-2 bus in scenario B, which is denoted as p

′

. The
other probabilistic variable describes the homogeneous overtaking behavior which is denoted as p.

In terms of the equation (62), ∆T is a quadratic convex function of p and a linear function of p
′

. In
addition, ∆T is a monotonous function with respect to p on [0, 1]. Two groups of numerical experiments
are conducted to see the impact of both p

′

and p on service time. TsA, TsB, TsC , TsD, PA, PB, PC , PD

and the minimum time waiting for either berth-1 bus or berth-2 bus to complete in scenario B are
fixed. P

′

= 0.05 and P
′

= 0.95 are tested for ten different overtaking probabilities ranging from 0.1
to 1 with an interval of 0.1. The results are shown in Fig. 7.

[Figure 7 about here.]

The results indicates that (i) overtaking weakened the influence of queueing and decreases the
service time at bus stop; (ii) the higher the overtaking probability, the more service time saving can
be obtained; (iii) there is a slight increase in ∆T when the probability that berth-1 bus completes its
service earlier than berth-2 bus is higher; (iv) if the probability of overtaking is 100%, the service time
saving is the same no matter which bus finishes its service earlier in scenario B.

5.5. Impact of different stochastic arrival processes

In this section, different stochastic arrival rate of passengers are examined. The Monte Carlo
method is employed to obtain service time estimation of different passengers’ arrival distribution.
Two other arrival processes are adopted, namely uniform distribution and normal distribution. The
mathematical expectation of these two distribution are the same as the Poisson distribution. The
variance of normal distribution is also the same as Poisson distribution. The variance of uniform
distribution cannot be set, because it is dependent on its expectation.

[Table 10 about here.]

For each distribution, a hundred iterations of experiments were conducted. The mean values of
different errors are provided in Table 11. By comparing the results of the Poisson arrival process and
the normal process, it is clear that the Poisson process outperforms the normal process on most bus
lines. When comparing the Poisson process and the uniform process, the former has a slight advantage.
Besides, intuitively, the assumption of uniform arrival process is not reasonable. All in all, the Poisson
arrival process is suitable for modeling passengers’ arrival.

6. Conclusion

In this paper, we presented the new compound Poisson service time estimation model (CPSTM)
to estimate bus service time at curbside bus stops, with particular consideration for the queuing
phenomenon. Four different scenarios that may occur in curbside bus stops were established and the
corresponding probability models were formulated based on the Poisson process.

We observed a representative curbside bus stop, and collected data every weekday in the month
of April, resulting in the collection of 282 valid bus service events. By comparing the computational
results of the basic model and the CPSTM, we analyzed the effectiveness of the CPSTM and found
from Table 8 that the queuing phenomenon at the bus stop considerably increased the bus service
time, requiring that it be taken into account. Moreover, the observed values of tgap, t

+
gap and tjgap were

also employed for the CPSTM computation, and the performances were nearly equivalent with and
without the real-time data. The formulation of the CPSTM is therefore reasonable and effective.

Since CPSTM can be seen as an off-line model and offers an effective estimation, it facilitates
a transportation agency’s enhancement of its understanding of bus stop performance and may be
connected to other transit modeling applications. First, CPSTM can be incorporated into a transit
simulation tool because it provides a probabilistic description rather than deterministic results of bus
service time. Probabilistic modeling of bus service time is more precise than deterministic model,
due to its uncertain nature. Second, by applying a computer simulation, the relationship between the
number of bus stop berths and capacity can be analyzed. Third, CPSTM may also be used in transit
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scheduling for either a single bus line or network-wide application. Last, service time at a bus stop
area is an important component in the design of a transit network. CPSTM has the potential to be
used in transit network design problems, particularly for those focusing on bus transfer.

As to the CPSTM itself, two possible directions present themselves for further exploration in the
future. First, the number of berths of some curbside bus stops, such as stops in the central business
district or large hub stops, can be expanded to 3, and the CPSTM accordingly revised. Second,
passenger demand and traffic conditions vary during the day as well as the passenger arrival rate at
the bus stop (Tirachini (2013)). The arrival rates λ and µ can be seen as functions of the time periods
t. The compound Poisson process will be extended to inhomogeneous compound Poisson processes.
These two time period functions can be formulated by regression models using related data.
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A. Variables and parameters

Table 1: Variables and parameters

Variables or parameters Definitions and source
T bus dwell time which is used in basic model.

C
dead time for opening and closing doors which is obtained
by observation.

ah
the consumed time of each alighting passenger h which is
from observation.

bq
the consumed time of each boarding passenger q which is
from observation.

m
the number of alighting passengers which is from
observation.

n
the number of boarding passengers which is from
observation.

Ts
the estimated service time of current bus which is the
estimation target in CPSTM.

T+
s

a the estimated service time of the forward bus.

T++
s

b the estimated service time of the front bus of the forward
bus.

Td

the dwell time in and/or out of the bus stop(including the
waiting time for entering and/or leaving the bus stop
area). It is a component in Ts.

Tm
the time wherein that buses move in and out of the bus
stop.

twe the time wherein buses wait to enter the bus stop.

t+we

the time wherein the forward buses wait to enter the bus
stop.

t++
we

the time wherein the bus that is front of the forward bus
wait to enter the bus stop.

twl the time wherein buses wait to leave the bus stop.

t+wl

the time wherein the forward buses wait to leave the bus
stop.

Continued on next page

16



Table 1 – Continued from previous page
Variables or parameters Definitions and source

te the time wherein buses enter the bus stop.
t+e the time wherein the forward buses enter the bus stop.
tl the time wherein buses leave the bus stop.
t+l the time wherein the forward buses leave the bus stop.

tgap
the time difference between the start point of t+we and twe.
It is obtained from observation.

t+gap
the time difference between the start point of t++

we and twe.
It is obtained from observation.

tjgap
c the tgap of the bus line j.

t+j
gap

the time difference between the start point of t++
we and twe

of bus line j. It is obtained from observation.

P j
i

the probability of presence of scenario i for bus line j
where i ∈ {A,B,C,D}

p∗
the probability of only one bus servicing in the stop area
at berth-2.

L the length of a typical bus.
vl the speed when buses are leaving the curbside bus stop.
ve the speed when buses are entering the curbside bus stop.
λj the bus arrival rate of bus line j.
λ0 the total bus arrival rate, λ0 =

∑

λj

µj
a the arrival rate of alighting passengers of bus line j.

µj
b

the arrival rate of boarding passengers of bus line j.

ya mean value time of alighting passenger.
yb mean value time of boarding passenger.
T j
s the estimated service time of bus line j.

T j
si

the total service time of scenario i of bus line j where
i ∈ {A,B,C,D}.

T 0
s the mean value of estimated service time of all bus lines.

T j
s the mean value of estimated service time of bus line j.

nj the number of observed buses of line j.
N the number of total observed buses.
Ts,k the total service time calculated by iteration k.

T j
s,k

the total service time of bus line j calculated by iteration
k.

T j

(i,s) the observed service time of the i-th bus of line j

a The sign “+” in the superscript position denotes a forward bus. If a variable is superscripted

with “+”, it means the associated value of its forward bus. For example, T+
we means the time

that the immediate forward bus wait to enter the bus stop.
b The sign “++” in the superscript position denotes the bus in front of the forward bus. If

a variable is superscripted with “++”, it means the associated value of its front bus of the

forward bus. For example, T++
s means the total service time of the bus in front of the forward

bus at the same bus stop.
c If a variable is superscripted with j , it means the associated value of bus line j. For example,

tjgap is the tgap of bus line j.

B. Proof of existence of stable solution by iteration

As shown in the iteration process, Ts,k and T j
s,k will update according to the iteration times k until

T j
s,k = T j

s,k+1, which indicates that the estimation of T j
s,k is stable (then Ts,k, according to equation

(36), will be stable too).
For any j ∈ J , equation (31) can be expanded as follows.
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T j
s =

∑

i

pjiT
j
si = pjAT

j
sA + pjBT

j
sB + pjCT

j
sC + pjDT j

sD

= (1−

∫ T+
s

0

λje
−λjtdt) · T j

sAs+

∫ T++
s

0

λje
−λjtdt ·

∫ T+
s

0

λje
−λjtdt · T j

sB

+(1−

∫ T++
s

0

λje
−λjtdt) ·

∫ T+
s

0

λje
−λjtdt · p∗ · T j

sC

+(1−

∫ T++
s

0

λje
−λjtdt) ·

∫ T+
s

0

λje
−λjtdt · (1− p∗) · T j

sD.

Let T+
s = x, then T++

s = x+ 1
λ0
. Set:

f(x) = (1−

∫ x

0

λje
−λjtdt) · T j

sAs+

∫ x+ 1
λ0

0

λje
−λjtdt ·

∫ x

0

λje
−λjtdt · T j

sB

+(1−

∫ x+ 1
λ0

0

λje
−λjtdt) ·

∫ x

0

λje
−λjtdt · p∗ · T j

sC

+(1−

∫ x+ 1
λ0

0

λje
−λjtdt) ·

∫ x

0

λje
−λjtdt · (1− p∗) · T j

sD.

If f(x) = x has solutions, then, according to the fixed point theorem, we can obtain a stable T j
s by

iteration.
Let

g(x) = f(x)− x = (1−

∫ x

0

λje
−λjtdt) · T j

sAs+

∫ x+ 1
λ0

0

λje
−λjtdt ·

∫ x

0

λje
−λjtdt · T j

sB

+(1−

∫ x+ 1
λ0

0

λje
−λjtdt) ·

∫ x

0

λje
−λjtdt · p∗ · T j

sC

+(1−

∫ x+ 1
λ0

0

λje
−λjtdt) ·

∫ x

0

λje
−λjtdt · (1 − p∗) · T j

sD − x,

where g(x) is a continuous function on (−∞,+∞). It is apparent that the solutions of g(x) = 0
must distribute on (0,+∞) because x is the estimation of the bus service time, which must be positive.
When x → 0,

∫ x

0
λje

−λjtdt → 0, and g(x) → T j
sA, which is absolutely positive, and, when x → ∞,

both
∫ x

0
λje

−λjtdt and
∫ x+ 1

λ0

0 λje
−λjtdt approach 1 such that g(x) = T j

sB−x = −∞. According to the
intermediate value theorem, g(x) = 0 has solutions on (0,+∞). However, we may have more than one
x that satisfies g(x) = 0. If that occurs, we can apply solutions that match the physical significance
of x.

C. Calculating the probability and service time of scenarios in section 5.4

For scenarios E, F, G and H, the service time of each scenario is calculated as following:
Scenario E:

same as scenario A, then

T j
sE = T j

sA = C +max{µj
at

j
gapya, µ

j
bt

j
gapyb}+

L

ve
+

L

vl
. (45)

Scenario F:
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similar to scenario B,

tjwl = 0, tje =
L

ve
, tjl =

L

vl
, (46)

tjwe = min{T++
s −

L

vl
− t+gap, T

+
s −

L

vl
− tgap}, (47)

then

T j
sF = C +max{µj

at
j
gapya, µ

j
bt

j
gapyb}+

L

ve
+

L

vl
+min{T++

s −
L

vl
− t+gap, T

+
s −

L

vl
− tgap}

= T j
sA +min{T++

s −
L

vl
− t+gap, T

+
s −

L

vl
− tgap}.

(48)

Scenario G:

same as scenario E, then

T j
sG = T j

sE = C +max{µj
at

j
gapya, µ

j
bt

j
gapyb}+

L

ve
+

L

vl
. (49)

Scenario H:

same as scenario E, then

T j
sH = T j

sE = C +max{µj
at

j
gapya, µ

j
bt

j
gapyb}+

L

ve
+

L

vl
. (50)

Fixed solutions can be obtained for T j
sE , T

j
sF , T

j
sG and T j

sH by iteration procedure proved in B.
In addition to service time of each scenario, the probability of occurrence of each each scenario

should be calculated. It is assumed the probability of bus overtaking is p. The probabilities of the
four scenarios A, B, C and D are PA, PB , PC and PD respectively. The probability of berth-1 bus
finishes its service first in scenario B is p

′

. Thus, the probability of berth-2 bus finishes its service
first in scenario B is 1− p

′

. T
′

s represents estimated bus service time when overtaking is allowed and
with a fixed probability. T

′

si, i ∈ {A,B,C,D}, represents the associated bus estimated service time of

scenario i. Therefore, T
′

s =
∑

i

T
′

siPi. ∆T (= Ts − T
′

s) is defined as the difference between Ts and T
′

s.

Without loss of generality, we set

TsA = a, TsB = b, TsC = c, TsD = d, (51)

so
TsE = a, TsF = a+m,TsG = a, TsH = a, (52)

according to the calculations above, where m = min{T++
s − L

vl
− t+gap, T

+
s − L

vl
− tgap} > 0. Moreover,

a, b, c, d,m satisfy follows:

a+m ≤ b, a+m ≤ c, a+m ≤ d, c ≤ b, d ≤ b, (53)

since b and c contain time value of waiting to enter or exit, d contains time value of waiting to enter
and exit,and m is the minimum of waiting time. Thus,

Ts = PATsA + PBTsB + PCTsC + PDTsD = PA · a+ PB · b+ PC · c+ PD · d, (54)

T
′

s = PAT
′

sA + PBT
′

sB + PCT
′

sC + PDT
′

sD, (55)

T
′

sA = TsE = a, (56)
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T
′

sB = p
′

· [(1− p) · TsB + p · TsF ] + (1 − p
′

) · {p · [p · (TsF + (1− p) · (TsD +m)] + (1− p) · TsB}

= p
′

[(1 − p) · b+ p · (a+m)] + (1− p
′

){p · [p · (a+m) + (1− p) · (d+m)] + (1− p) · b}

= b+ [(a− d) · p
′

+ d+m− b] · p+ (1− p
′

) · (a− d) · p2.

(57)

T
′

sC = (1 − p) · TsC + p · TsG = (1− p) · c+ p · a = c+ (a− c) · p, (58)

T
′

sD = (1− p) · TsD + p · TsH = (1− p) · d+ p · a = d+ (a− d) · p, (59)

T
′

s =PA · a+ PB · b+ PB · {[(a− d) · p
′

+ d+m− b] · p+ (1− p
′

) · (a− d) · p2}

+ PC · c+ PC · (a− c) · p+ PD · d+ PD · (a− d) · p,
(60)

∆T =Ts − T
′

s

=− PB · {[(a− d) · p
′

+ d+m− b] · p+ (1 − p
′

) · (a− d) · p2}

− PC · (a− c) · p− PD · (a− d) · p

=− PB · (1− p
′

) · (a− d) · p2

− {PB · [(a− d) · p
′

+ d+m− b] · p+ PC · (a− c) + PD · (a− d)} · p

(61)

Noticed that PA, PB, PC , PD, p and p
′

are probabilities which belong to [0, 1] and a < c, a <
d, d+m ≤ b, then

∆T = −PB ·(1−p
′

) ·(a−d) ·p2 −{PB · [(a−d) ·p
′

+d+m−b] ·p+PC ·(a−c)+PD ·(a−d)}·p > 0. (62)
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(a) Disorder passengers in a curbside bus stop. (b) Bus route postings at a bus stop.

(c) Queuing phenomenon at a bus stop area. (d) Limited number of berths.

Figure 1: Phenomena associated with bus stop areas.
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Figure 2: The structure of the curbside bus stop.
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Table 2: Sample data

twe te n
n
∑

ah m
m
∑

bq C T twl tl Ts tgap t+gap
8 4 4 14 1 1 3 17 0 3 32 5 18
7 11 2 6 0 0 5 11 0 4 33 7 11
0 4 3 21 3 4 1 22 0 5 31 26 126

32



Table 3: Results of bus arrival rate

Bus line number(No.j) Arrival rate λj(buses/hour)
No. 45 3.39
No. 50 6.48
No. 633 6.87
No. 662 6.10
No. 678 5.03
No. 842 8.03
No. 851 4.16
No. 859 5.23
No. 879 4.16

Total bus arrival rate λ0 = 49.45
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Table 4: Values of constants

Content Value
deadtime C of No. 45 6.94s
deadtime C of No. 50 5.13s
deadtime C of No. 633 2.51s
deadtime C of No. 662 4.29s
deadtime C of No. 678 3.11s
deadtime C of No. 842 4.39s
deadtime C of No. 851 4.39s
deadtime C of No. 859 5.45s
deadtime C of No. 879 4.96s

bus length L 12m
bus speed ve 10.54km/h
bus speed vl 9.6km/h

alighting time of per passenger ya 1.24s
boarding time of per passenger yb 2.26s
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Table 5: Results of bus service time estimation

Bus line number(No. j) Estimation of bus service time(s)
No. 45 18.34
No. 50 18.53
No. 633 12.80
No. 662 16.64
No. 678 13.57
No. 842 15.41
No. 851 21.15
No. 859 16.84
No. 879 22.37

Estimation of Ts = 17.03
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Table 6: Error measurements of CPSTM

Bus line number (No.j) εjmean µj
mean εjrmean

No. 45 5.03 6.32 24.5%
No. 50 4.85 6.73 25.2%
No. 633 2.49 3.22 18.5%
No. 662 3.90 4.85 26.0%
No. 678 1.99 2.62 15.1%
No. 842 4.11 5.65 22.2%
No. 851 5.82 6.79 32.1%
No. 859 4.08 5.98 18.6%
No. 879 5.48 6.81 27.4%

Total mean absolute error εmean = 4.15(s)
Total root mean squared error µmean = 5.62(s)
Total mean relative error εrmean = 23.8%
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Table 7: Error measurements of basic model

Bus line number (No.j) ε
′j
mean µ

′j
mean ε

′j
rmean

No. 45 9.47 9.68 49.1%
No. 50 8.13 8.19 42.7%
No. 633 8.22 8.31 63.5%
No. 662 7.77 7.93 49.1%
No. 678 7.44 7.47 57.9%
No. 842 9.39 9.80 53.2%
No. 851 7.74 7.90 41.9%
No. 859 9.31 9.40 51.8%
No. 879 10.11 10.81 47.8%

Total mean relative error ε′

mean = 8.63(s)

Total root mean squared error µ′

mean = 8.91(s)

Total mean relative error ε′

rmean = 51.1%
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Table 8: Differences of error measurements of basic model and CPSTM

Bus line number (No.j) ε
′j
mean − εjmean(s) µ

′j
mean − µj

mean(s) ε
′j
rmean − εjrmean

No. 45 4.44 3.36 24.6%
No. 50 3.28 1.46 17.5%
No. 633 5.73 5.09 45.0%
No. 662 3.87 3.08 23.1%
No. 678 5.45 4.85 42.8%
No. 842 5.28 4.15 31.0%
No. 851 1.92 1.11 9.8%
No. 859 5.23 3.42 33.2%
No. 879 4.63 4.00 20.4%

ε′

mean − εmean = 4.48(s)

µ′

mean − µmean = 3.29(s)

ε′

rmean − εrmean = 27.3%
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Table 9: Error measurements of CPSTM with observed tgap, t
+
gap and tjgap

Bus line number (No.j) ε
′′j
mean µ

′′j
mean ε

′′j
rmean

No. 45 4.79 6.02 22.6%
No. 50 4.77 6.47 23.3%
No. 633 2.47 3.25 18.2%
No. 662 4.09 5.41 26.8%
No. 678 2.14 2.74 16.6%
No. 842 3.91 5.64 21.2%
No. 851 5.92 7.33 32.2%
No. 859 3.79 5.69 17.2%
No. 879 6.00 7.61 27.5%

Total mean absolute error εmean
′′ = 4.16(s)

Total root mean squared error µmean
′′ = 5.76(s)

Total mean relative error εrmean
′′ = 23.2%
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Table 10: Differences of error measurements of CPSTM and CPSTM with observed data

Bus line number No.j εjmean − ε
′′j
mean(s) µj

mean − µ
′′j
mean(s) εjrmean − ε

′′j
rmean

No. 45 0.24 0.30 1.9%
No. 50 0.08 0.26 1.9%
No. 633 0.02 -0.03 0.3%
No. 662 -0.19 -0.56 -0.8%
No. 678 -0.15 -0.12 -1.5%
No. 842 0.2 0.01 1.0%
No. 851 -0.10 -0.54 -0.1%
No. 859 0.29 0.29 1.4%
No. 879 -0.52 -0.8 -0.1%

εmean − ε′′

mean = −0.01(s)

µmean − µ′′

mean = −0.14(s)

εrmean − ε′′

rmean = 0.6%
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Table 11: Error measurements of possion v.s. non-possion

εjmean µj
mean εjrmean

No.j possion uniform normal possion uniform normal possion uniform normal
No.45 5.03 4.99 4.89 6.32 6.25 6.10 24.5% 24.4% 24.5%
No.50 4.85 4.86 4.87 6.73 6.60 6.60 25.2% 26.8% 26.8%
No.633 2.49 2.51 5.55 3.22 3.17 6.17 18.5% 19.3% 48.2%
No.662 3.90 3.97 4.05 4.85 4.88 4.93 26.0% 27.2% 28.1%
No.678 1.99 2.00 2.22 2.62 2.62 2.69 15.1% 15.2% 17.5%
No.842 4.11 3.99 3.86 5.65 5.50 5.30 22.2% 21.9% 21.9%
No.851 5.82 6.15 6.23 6.79 7.24 7.31 32.1% 35.0% 40.0%
No.859 4.08 4.08 4.14 5.98 5.86 5.63 18.6% 18.6% 20.4%
No.879 5.48 5.47 5.73 6.81 6.80 6.92 27.4% 27.3% 29.8%
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