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Mobile Traffic Sensor Routing in Dynamic
Transportation Systems
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Abstract—In transportation networks, traditional fixed sensors4
are used to monitor the operation of transportation systems.5
However, fixed sensors cannot move once they are installed. In6
this paper, the motion ability of traffic sensors is introduced to7
improve the performance of transportation network surveillance.8
A mobile traffic sensor routing problem is proposed, modeled as9
a novel vehicle routing problem. A measure of traffic information10
acquisition benefits is developed and used to gauge the surveillance11
performance. To solve this mobile-sensor routing problem, a hy-12
brid two-stage heuristic algorithm is designed, which is based on13
particle swarm optimization and ant colony optimization. Numer-14
ical experiments are conducted. The results show that the mobile15
traffic sensor has a better network surveillance performance than16
the fixed sensor in most experimental cases.17

Index Terms—Ant colony optimization (ACO), hybrid two-stage18
heuristic algorithm, mobile traffic sensor routing, particle swarm19
optimization (PSO), vehicle routing problem (VRP).20

I. INTRODUCTION21

TRAFFIC information significantly affects transportation22

management and control. To obtain real-time traffic in-23

formation, transportation surveillance network is necessary.24

Currently, traffic sensors serve as an important way to gain25

traffic information. Due to limited budgets, traffic sensors can-26

not be deployed everywhere in transportation networks. Traffic27

information collected from optimal sensor locations is used28

to provide real-time traffic data for various traffic information29

applications, such as flow observation and estimation [including30

origin–destination (OD) trips, route flow, and link flow], travel-31

time estimation, bottleneck identification, and so on.32

The sensor location problem aiming to observe and esti-33

mate traffic flow has attracted considerable attention for sev-34

eral decades. To estimate OD, four important location rules35

and corresponding mathematical models that implement these36

rules are proposed [1]. A two-stage model [2] is presented to37

determine optimal sensor placement location to estimate OD38
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demand. A mathematical model is formulated to intercept all or 39

as many OD trips as possible [3]. To infer all link flows from 40

partial observed links, an optimal location model on nodes [4] 41

is determined to infer link flow in a transportation network. 42

The linear algebra method is used to find an optimal sensor 43

location to infer network-wide flow [5]. Regarding the path flow 44

estimation, an optimal sensor deployment method is proposed 45

so that path flow can be distinguished and estimated in [6] 46

and [7]. A sensor location problem for flow observation and 47

estimation is well reviewed in [8]. 48

The travel-time estimation problem is another important di- 49

rection for sensor location issues. The quality benefit of travel- 50

time estimation is maximized by optimally locating automatic 51

vehicle identification readers [9]. A simulation tool is employed 52

in [10] and [11] to figure out the relationship between travel 53

characteristics and sensor location. The impact of sensor spac- 54

ing on travel-time estimation is investigated [12], [13]. A se- 55

quential modeling framework for optimal sensor location is also 56

proposed [14]. Objective applications include ramp metering 57

control and travel-time estimation. 58

Most of these studies are conducted in a static and determin- 59

istic transportation environment. Other studies in the field of 60

traffic sensor location problem consider dynamic and stochastic 61

environmental factors that influence sensor location patterns. 62

The optimal sensor location problem is studied for the purpose 63

of estimation in a dynamic transportation environment in [15] 64

and [16]. Sensor failure [17] is considered in a sensor location 65

model to achieve a more reliable location pattern. Demand 66

estimation uncertainty is minimized in [18]. A nonlinear two- 67

stage stochastic model is proposed in [19] to maximize the OD 68

coverage and information gain against random events. 69

Most studies in the transportation field investigate how to 70

maximize the usage of fixed sensors. Fixed traffic sensors 71

cannot be relocated once installed. In the last several decades, 72

mobile sensors have attracted considerable attention in other 73

fields such as communication and automation. Several seed 74

nodes [20] have been used to relocate all sensors in a network 75

without additional hardware. A distributed energy-efficient de- 76

ployment algorithm [21] is proposed for mobile sensors and 77

intelligent devices in a general network. Distributed algorithms 78

for mobile-sensor networks are presented against events that 79

occur frequently [22]. In the field of information gathering, 80

a delay/fault-tolerant mobile-sensor network is proposed [23]. 81

Most studies of mobile sensors focus on network or algorithm 82

design for different purposes. Only the work in [24] has used 83

sensor-equipped vehicles to gather data from vibration and GPS 84

sensors. Such detection aims to identify potholes and other 85

severe road surface anomalies. Other mobile sensors in the field 86
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of transportation include airborne imagery sensors [25], [26]87

and GPS-based traffic probes [27].88

Mobile traffic sensors are assumed to have the surveillance89

ability of recording traffic flow and identifying license plates so90

that travel-time information can be obtained. We assume that91

mobile sensors are special vehicles with equipped surveillance92

device. The special vehicles are managed by transportation93

authorities. Probe vehicles equipped with sensor devices can94

be considered traffic mobile sensors. We model the motion of a95

mobile traffic sensor in a transportation network as a particular96

vehicle routing problem (VRP) that has a long research history.97

The first study can be traced back to [28] and [29], which fo-98

cused on a large-scale traveling-salesman problem. In general,99

the traditional VRP can be classified into four categories [30].100

• Capacity- and Distance-Constrained VRP (CVRP). The101

CVRP determines the routes for a fleet of vehicles without102

exceeding the capacity and distance constraints of each103

vehicle. An exact algorithm is proposed in [31] to solve the104

CVRP. Exact results for the CVRP are impossible even for105

medium networks. Several heuristic methods have been106

developed to solve the CVRP. These heuristics can be107

classified into ant colony optimization (ACO) [32], [33],108

simulated annealing [34], neighborhood search [35], [36],109

and particle swarm optimization (PSO) [37].110

• VRP with Time Windows (VRPTW). The VRPTW is a111

problem in which routes should be designed in a way112

that each point is visited only once by exactly one vehicle113

within a given time interval. Similar to other traditional114

VRP and its variants, the VRPTW cannot be solved with115

an exact solution. Therefore, several state-of-the-art meta-116

heuristics have been proposed, such as ACO [38], tabu117

search [39], and simulated annealing [40].118

• VRP with Backhauls (VRPB). The VRPB differs from the119

classic VRP mainly because, on each route, the backhaul120

customers are visited after all linehaul customers. An121

exact algorithm is given for VRPB for small and medium122

networks [41]. Recent studies about VRPB include [42]123

and [43].124

• VRP with Pickup and Delivery (VRPPD) [44]. For the125

VRPPD, a request is defined by a pickup point and a126

related delivery point. A demand is defined as goods127

or service transportation between the pickup point and128

delivery point. Recent advances in VRPPD are reported129

in [37], [45], and [46].130

Stochastic and dynamic VRPs have also been developed [47],131

[48]. A good taxonomic review for VRP is given in [49]. In [30]132

and [50], VRPs are comprehensively reviewed. Our model does133

not fit into any of these categories.134

In this paper, the mobile traffic sensor has two different states135

on the transportation network. One is traveling on the network,136

and the other is staying on the links and collecting informa-137

tion simultaneously. We also assume that traffic information138

acquisition benefits are related to the stay time of links. In139

VRP context, the objective function depends on the service time140

of customers, which is the stay time of links. Mobile sensor141

captures as much traffic information as possible. The mobile-142

sensor routing problem proposed is named as the information-143

capture-oriented mobile-sensor routing problem (IMRP). The 144

IMRP differs from the traditional VRP due to the following. 145

• Most customers in traditional VRPs need only a one- 146

time service. In our IMRP model, the stay time on a link 147

crucially affects the objective function. One link can be 148

visited by one mobile sensor at different time more than 149

once. However, from the basic idea of traffic information 150

collection, it is wasteful that more than one mobile sensors 151

visit an identical link at the same time. Duplicate obser- 152

vations do not increase the information collection per- 153

formance. Longer observation time increases information 154

acquisition benefits. 155

• A comparison with traditional VRPs indicates that most of 156

them focus on minimizing travel time or travel distance. In 157

this paper, cost pertaining to vehicle routing is unimpor- 158

tant. What matters is captured traffic information. 159

• One constraint for most VRPs is the number of vehicles. In 160

our model, another constraint is included, i.e., the travel- 161

time constraint. The travel time from one link to another 162

link at specific departure time t should be consistent 163

with the traffic condition of the dynamic transportation 164

network. 165

• The total travel time and stay time of the mobile sensor 166

should not exceed a predefined value. 167

The advantages of mobile traffic sensors are as follows. First, 168

a transportation network is a dynamic environment. Network 169

states differ among different time intervals. Fixed sensor net- 170

works may offer good surveillance performance in one state 171

but bad at another. Mobile traffic sensors avoid this weakness 172

of fixed sensor networks. Second, fixed sensors are subject 173

to failure [51]. Traffic sensor network maintenance is a time- 174

consuming job. Mobile traffic sensors are flexible and can be 175

used as complements to provide surveillance service temporar- 176

ily. Although mobile traffic sensors have several advantages, 177

few studies have focused on them, not to mention their routing 178

problem. This paper aims to fill this gap. 179

This paper uses mobile traffic sensors to collect real-time 180

information. Dynamic transportation networks are considered 181

in our modeling. A group of optimal mobile-sensor routes is 182

to be designed by maximizing the benefits of traffic informa- 183

tion acquisition. The remainder of this paper is organized as 184

follows. In Section II, we measure traffic information acqui- 185

sition benefits and develop a mobile-sensor routing model. In 186

Section III, a hybrid two-stage heuristic algorithm is proposed 187

by combining PSO and ACO. In Section IV, numerical ex- 188

amples are provided to demonstrate the effectiveness of the 189

proposed model and algorithm. Section V concludes and sum- 190

marizes the main outcomes in this paper. 191

II. MOBILE TRAFFIC SENSOR ROUTING PROBLEM 192

Routing mobile sensors aim to provide effective network 193

surveillance. In contrast to fixed traffic sensors, mobile traffic 194

sensors can move in the network. To collect traffic information 195

as much as possible, the main problem of using mobile-sensor 196

networks is to design a route for each mobile sensor. Statisti- 197

cally, more samples collected on a link leads to a more accurate 198

estimation of the traffic state. Given that mobile sensor has a 199
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constant sampling rate, the mobile sensor’s stay time on links200

significantly affects traffic information acquisition. Therefore,201

decision variables in the mobile traffic sensor routing problem202

are of two kinds: a route variable that decides which route to go203

for each mobile sensor and the stay time of mobile sensor on204

each link of the route. Note that, this paper, visiting a link or205

arriving at a link means that the mobile traffic sensor is going206

to move to the middle point of a link. This assumption does not207

influence the traffic information collection efficiency. On the208

other hand, it simplifies the calculation of the travel distance209

between adjacent links. More than one mobile sensor staying on210

the same link at the same time does not make traffic information211

surveillance performance better. Duplicate stay of more than212

one mobile sensors in an identical link at the same time is a kind213

of resource waste. The total time a mobile sensor can spend is214

defined as the summation of travel time and stay time. The total215

time is not allowed to exceed a predefined value.216

In this paper, the objective traffic applications include link217

flow inference, path travel-time estimation, and OD estima-218

tion. These three applications require observations on the link,219

path, and network levels. A dynamic transportation network is220

adopted. We assume the time-sliced OD trips. For each time221

interval of a day and each link, OD demand is assumed stable222

from a long-term perspective. Further, we assume that the flow223

volume assigned on each link follows a probability distribution.224

This assumption is reasonable because the OD trips of each225

time interval are not strictly constant but has slight perturbation.226

Let us denote a transportation network as G(N, A), where227

N represents the set of intersections in a network and A228

represents the set of links that connect intersections. Mobile229

sensors travel from one link to another to obtain real-time traffic230

information on links. The total information acquisition benefits231

are determined by the total stay time on all observed links232

among all time intervals. First, the sample collection period is233

assumed fixed and dependent on the configuration of devices.234

A relationship between sample size and traffic state observation235

accuracy is built in Section II-A. Traffic state observation accu-236

racy is used as a measure of information acquisition benefits.237

Second, the benefits of information acquisition are assumed238

determined on the link, path, and network levels, respectively.239

The measure of information acquisition benefits is developed240

accordingly.241

A. Sample Size and Estimation Accuracy242

In practice, link traffic states, such as link traffic flow and243

travel speed, for each time interval on a daily basis experience244

perturbation. We assume that authentic link traffic flow and link245

travel speed information follow a deterministic but unknown246

probability density distribution. More observations increase247

estimation accuracy for these unknown distributions. Thus,248

longer stay time increases estimation accuracy. Here, we figure249

out the impact of sample size on estimation accuracy. From250

the perspective of statistics, the basic idea behind sample size251

determination is that a large sample size increases the degrees252

of freedom and thus reduces the confidence interval. Assume253

that we have prior information about the mean and deviation of254

traffic flow or travel speed distribution. We denote prior mean255

Fig. 1. t distribution sample size determination.

and deviation as μ and σ, respectively. The ground-truth value 256

of the mean and deviation is unknown. Sampling is used to 257

update prior mean and deviation. The longer the time spent on 258

data collection, the higher the estimation accuracy we obtain. 259

Data collected are assumed error free. Mean and deviation 260

estimation is used to illustrate the relationship between sample 261

size and observation accuracy. 262

Mean Estimation: Consider a sample (X1, X2, X3, . . . , Xn) 263

with size n from an unknown distribution. If we manipulate the 264

definition for the t statistic, we obtain 265

X̄ − μ

S/
√
n

∼ t(n− 1). (1)

The right-hand side of (1) is t(n− 1), which is not dependent 266

on any unknown parameters. The confidence level is denoted α. 267

The half-length of the confidence interval is computed as 268

d =
S√
n
tα/2(n− 1). (2)

Because prior information is given, sample standard variance 269

S can be substituted by prior standard variance σ as 270

d =
σ√
n
tα/2(n− 1). (3)

Deviation Estimation: Following the similar logic for mean 271

estimation to estimate deviation, we calculate 272

P
{
χ2
1−α/2(n− 1) ≤ (n−1)s2/σ2 ≤ χ2

α/2(n−1)
}
=1−α.

(4)

After some simple steps of manipulation, the length of the 273

confidence interval can be stated as 274

d =
(n− 1)s2

χ2
α/2(n− 1)

− (n− 1)s2

χ2
1−α/2(n− 1)

. (5)

In Figs. 1 and 2, it is shown that the confidence interval in- 275

creases with deviation under the condition of identical degrees 276

of freedom. More observations increase estimation accuracy. 277
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Fig. 2. Chi-square sample size determination.

To integrate this observation into our model, the benefit from278

the observations of a link is assumed as a nonlinear monotonic279

increasing function of the mobile sensor’s stay time. We first280

use a hyperbola to fit the curve shown in Fig. 2 because the281

deviation is seen more informative. The R-square of this fit is282

greater than 99%, which shows a very good fitting performance.283

However, this hyperbola monotonically decreases and thus does284

not satisfy our requirements. After some simple manipulation285

of curve reversal and horizontal shift, we obtain a traffic infor-286

mation acquisition benefit curve as287

f(s) =

{
p1s+p2

s+q1
, s > 0

0, s = 0
(6)

where s represents the stay time of mobile sensors on a link.288

p1, p2, and q1 are the parameters from curve fitting. Deviation289

information σ is embedded in these three parameters. The290

marginal benefit of observation decreases as the first derivative291

of (6) decreases. Different σ results in different parameter292

combinations of (6).293

B. Link Importance in Transportation Network294

To obtain a good insight into the link contribution, the link295

importance of the transportation network should be identified.296

The contribution of a single link to the transportation network297

can be categorized into three aspects: 1) link level; 2) path level;298

and 3) network level. These three aspects are elaborated in the299

following.300

1) Link Importance on Link Level: Single-link observation301

is helpful because it can be used together with historical data to302

contribute to link flow estimation. One possible application that303

uses link flow information is network-wide link flow inference304

[5]. We adopts a link-based V/C ratio to identify the contribu-305

tion of links [52], where V is the link volume and C is the link306

capacity. The traffic information acquisition benefits on the link 307

level is formulated as 308

bl = αl

∑
a∈A

Va

Ca
xa (7)

where bl is the benefits based on the link level, αl is the 309

nonnegative coefficient of the link-level contribution, and Va 310

and Ca are the link volume and capacity, respectively, on link a. 311

xa = 1 shows that an observation is made on link a; otherwise, 312

xa = 0. 313

2) Link Importance on Path Level: We assume that traffic 314

mobile sensors have the ability to record the vehicle’s position 315

as the vehicle passes. If two mobile sensors at the same time 316

interval stay on two different links on one path, travel-time 317

information can be obtained for this route between the first 318

(head) sensor and the last (rear) sensor. We use a way similar 319

to that in [17] to measure route coverage benefits from mobile 320

sensors. The benefit on path level can be measured by 321

bp = αp

∑
p∈PS

(Pp, r − Pp,h) (8)

where bp represents the benefits obtained from the views of 322

travel-time estimation; αp denotes the nonnegative coefficient 323

of the path-level contribution; PS is the path set; Pp, r and Pp,h 324

are the rear and head positions of the mobile sensor on specific 325

path p, respectively; and Pp, r − Pp,h shows the distance that 326

mobile sensors on this specific path p can cover. 327

More factors and formulations can be applied to assess traffic 328

information acquisition benefits from the perspective of travel 329

time. One possible extensive factor for travel time is mobile- 330

sensor failure. Long distance between two mobile sensors 331

increases inaccuracy in travel-time estimation. In this case, 332

more complicated benefit expression should be formulated by 333

considering the aforementioned factors. 334

3) Link Importance on Network Level: Regarding the link 335

observation’s contribution to the transportation network level, 336

two factors have significant effects. One is transportation net- 337

work topology, and the other is travel demand assigned to the 338

transportation network. For each time interval, travel demand 339

is deemed relatively stable in this paper. One result derived 340

from this assumption is that the OD-link coincident matrix 341

is constant for each time interval. According to Yang’s four 342

rules for sensor location [1], sensors should be placed on links 343

with a higher number of OD pairs passed. One potential traffic 344

application from network-level benefits is OD estimation. An 345

example for the OD-link coincident matrix is shown as 346⎛
⎜⎜⎜⎝

1 0 1 0 1
0 1 0 0 1
1 0 1 1 1
0 1 0 0 1
0 0 1 0 0

⎞
⎟⎟⎟⎠ . (9)

This small transportation network has five OD pairs and five 347

links. The number of OD pairs passing through link1, link2, 348

link3, link4, and link5 are 2, 2, 3, 1, and 4, respectively. The 349

total number of OD pairs passing through a link reflects the 350

combinatorial effects for both transportation network topology 351
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factors and traffic demand factors. The number of OD pairs that352

pass a specific link can be taken as a measure of link importance353

on the network level. The benefits on the network level are354

formulated as355

bn = αn

∑
a∈A

Baxa (10)

where bn is the benefits obtained from the network level, A is356

the set of links, Ba represents the number of OD pairs passing357

through link a, αn is the nonnegative coefficient of network-358

level contribution, and xa = 1 represents an observation exists359

on link a.360

C. Mathematical Formulation361

Mathematical formulation is stated as362

Min f(s) =
∑
t∈T

(
αl

∑
a∈A

Va,t

Ca
f(sa,t) + αn

∑
a∈A

Ba,tf(sa,t)

)

+
∑
t∈T

⎛
⎝αp

∑
p∈PSt

(Pp,r − Pp,h)f(sp,t))

⎞
⎠ (11)

subject to363

uts, kv
ai, aj

(
Gts, kv

ai + τai, aj

(
Gts, kv

ai

))
= Lts+1, kv

aj ∀ai; ∀aj; ∀ts; ∀kv (12)

stsai, kv = Gts
ai, kv − Lts

ai, kv ∀ai; ∀kv; ∀ts. (13)∑
aj �=ai

uts, kv
aj, ai =

∑
ak �=ai

uts+1, kv
ai, ak ∀ai; ∀ts; ∀kv. (14)

∑
ai

u1, kv
a0, ai = 1 ∀kv. (15)

∑
ts

∑
ai

uts, kv
ai, a0 = 1 ∀kv. (16)

uts, kv
ai, aj ∈ {0, 1} ∀ai; ∀aj; ∀kv; ∀ts. (17)

Gts, kv
ai Lts, kv

ai ≥ 0 (18)

where ai, aj, and ak are the link indexes, a0 is the depot index,364

kv is the mobile-sensor index, and ts is a sequential index365

of the visited links. For example, there is a route as depot →366

link1 → link2 → link1 → link3 → depot. The corresponding367

sequential index for this route is 1, 2, 3, 4, 5, and 6, respectively.368

In our model, multiple visits of a identical link at different times369

are allowed. The sequential index for the first visit of link1 is 2,370

and the index for the second visit of link1 is 4. Different visit371

indexes are allowed to be associated with identical link. For372

the purpose of modeling, ts is chosen as a big number but do373

not significantly increase the model size. Gts, kv
ai and Lts, kv

ai are374

decision variable indicating the departure time and the arrival375

time of vehicle kv on link ai for its ts visit. Gts, kv
ai = 0 and376

Lts, kv
ai = 0 if vehicle kv does not leave or arrive at link ai at377

its ts visit; otherwise, Gts, kv
ai > 0, and Lts, kv

ai > 0. uts, kv
ai, aj is a378

binary variable. uts, kv
ai, aj = 1 means vehicle kv moves from link379

ai to link aj for its ts visit; otherwise, uts, kv
ai, aj = 0. τai, aj(t) is a 380

piecewise constant function that indicates the travel time from 381

link ai to link aj starting from departure time t. 382

The constraints are defined as follows. Mobile sensors’ stay 383

time on links must allow for travel time between links (12). 384

For constraint (13), vectors G and L contain information on 385

departure time and arrival time for all mobile sensors’ all visits 386

on each link; stay time information s can be easily obtained 387

from G and L. s is also used as an objective function to compute 388

the total traffic information acquisition benefits. If a mobile 389

sensor arrives at a link, it must also depart from that link (14); 390

the mobile sensor must start and end at the depot by (15) and 391

(16). Constraint (16) also indicates that the mobile sensor can 392

only return to the depot once. It is not allowed to return to the 393

depot more than once. The type and domain of the decision 394

variables are indicated in (17) and (18). 395

Objective function (11) is reformulated aiming to incorpo- 396

rate the stay-time-based traffic information acquisition bene- 397

fits. It considers the aforementioned statistical properties of 398

observations and three popular traffic applications. These three 399

traffic applications are integrated with different weighs, which 400

are specified by the transportation agencies. Since s contains 401

information about stay time of each mobile sensor of each 402

link at each time interval, the index system can be reused to 403

include the link index a and the time interval index t. sa, t 404

represents the stay time of traffic mobile sensors on link a at 405

time interval t. sp, t is the stay time of path p at time interval t 406

and is calculated by the shared stay time of two mobile sensors. 407

For example, if one mobile sensor spends the first 40 min of 408

a time interval in a path and another mobile sensor spends the 409

last 40 min of an identical time interval on the same path (the 410

time interval is assumed 1 h), the shared stay time is 20 min, 411

which is the common time of these two mobile sensors on this 412

path. Pp, r − Pp,h is the longest covered distance of the two 413

observations of path p. Regarding the final objective function 414

(11), f(sa, t) and f(sp, t) represent the impact of the mobile 415

sensor’s stay time of each link and each time interval on the 416

transportation network-wide information acquisition benefits, 417

as shown in (6). 418

This formulation only provides a framework of information 419

acquisition benefits based on mobile-sensor routing patterns. 420

This mathematical formulation is used to describe proposed 421

mobile-sensor routing problem and is not directly used for 422

problem solving. 423

III. HYBRID TWO-STAGE HEURISTIC ALGORITHM 424

The VRP is an NP-hard problem. A hybrid two-stage heuris- 425

tic algorithm is proposed to solve the IMRP. The proposed 426

model requires the computation of both vehicle route and 427

stay time. The ant colony algorithm performs well at finding 428

optimal or near-optimal routes for the VRP. However, the ant 429

colony algorithm is unsuitable for solving continuous problems 430

that refer to stay-time decision-making in our model. PSO 431

is a population-based stochastic approach suitable for solving 432

continuous optimization problems. A hybrid algorithm that 433

combines the ant colony algorithm and the PSO is designed to 434
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solve our proposed problem. The vehicle route is determined435

by the ant colony algorithm. The PSO is applied to figure out436

the optimal stay time on a given route. A fitness function is437

returned to the ant colony algorithm to update pheromone and438

next-round iteration.439

A. Particle Swarm Algorithm440

The mobile sensor’s total time should not exceed a prede-441

fined value. The initial solution for a given route is set as the442

maximum travel time among all time intervals, i.e.,443

hi,m =

⎧⎪⎨
⎪⎩ θ1

W−
∑

k≤M−1

max tk

M , m ≤ M − 1
W −

∑
m≤M−1

hi,m −
∑

m≤M−1

em, m = M

(19)

where h represents the stay-time vector of particles that con-444

tains the stay time on each link of a given route; hi,m is the445

stay time of the mth link of the ith route, which is a value;446

M is the particle dimensionality, which is the number of links447

on a specific route; W is the predefined total time, which is the448

summation of the travel time and the stay time; θ1 is a randomly449

generated value ranging from 0 to 1; max tk is the largest travel450

time from the kth link to the (k + 1)th link among all time451

intervals; and em is the real travel time from the mth link to the452

(m+ 1)th link after the first m links’ stay time is determined.453

The particle moves toward the optimum in terms of velocity454

and position. At each iteration, particle velocity and position455

are updated in terms of456

vi, d =Zvi, d−1 + C1 × θ2 × (pbesti, d−1 − hi, d−1)

+ C2 × θ × (lbesti, d−1 − hi, d−1)

vi, d =

{
vi, d, vi, d ≤ vmax

vmax, d, vi, d > vmax

hi, d =hi, d−1 + vi, d (20)

where d represents the dth generation for the ACO algorithm;457

hi, d represents the stay time of the ith particle of the dth gen-458

eration; hi, d is a vector, and each element of hi, d is hi,m; vi, d459

is the ith particle’s velocity at the dth generation; pbesti, d−1 is460

the personal optimal solution found by the ith particle among461

its own historical solutions, and lbesti, d−1 is the local optimal462

solution; Z is a positive inertia parameter; C1 and C2 are463

positive constants; and θ2 is a random generated value ranging464

from 0 to 1. vi, d is updated in the first expression of (20). vi, d465

is further restricted by vmax, which is a predefined particle at466

maximal speed. vi, d is used to update st.467

B. Ant Colony Algorithm468

1) Route Construction Rule: A vector is used to represent469

a vehicle route. One example of a route solution is [1 2 7 8470

1 0 1 9 2 3 1 0], where 1 denotes the vehicle depot and 0 is471

used as a separator to separate different mobile sensors. The472

other numbers in this vector are link IDs in the transportation473

network. We require that all vehicles should depart from the 474

vehicle depot and return to the depot again before the total time 475

is reached. In the example, two vehicles are separated by 0, and 476

the routes for these two vehicles are 1-2-7-8-1 and 1-9-2-3-1, 477

respectively. 478

Based on the idea from [53], mobile-sensor routes are con- 479

ducted as follows. The ants sequentially choose links to visit. 480

The state transition rule is used to give the probability with 481

which the ants decide to visit the next link, i.e., 482

S =

{
arg max

m∈J(a)
ταm,d × ηβm, q ≤ q0

s, q > q0
(21)

where S is the next link determined by the right-hand side of 483

(21); J(a) is the candidate link set of link a; S = 0 represents 484

that the mobile sensor returns to the depot; d represents the dth 485

generation of the ACO algorithm; τ is the pheromone; η is the 486

heuristic information; α and β are the parameters that control 487

the influence of the pheromone and heuristic information, re- 488

spectively; and q is a random variable. q0 is a predetermined 489

parameter (0 ≤ q0 ≤ 1). Ps is the probability that a mobile 490

sensor chooses to stop moving. The probability of choosing s 491

as the next visit link is determined by P . P is formulated as 492

P =

⎧⎨
⎩

(1 − Ps)
τα
s, d

×ηβ
s∑

m∈J(a)

τα
m, d

×ηβ
m

, s ∈ J(a)

Ps, s = 0

. (22)

In our model, a mobile sensor can visit the same link more 493

than once. Therefore, a mechanism that stops the mobile sensor 494

should be designed. A concept of physical power is created, 495

as shown in (22) and defined in (23). The physical power of 496

ants decreases when they make more visits. Given the gradual 497

increase in the fatigue degree, ants are more likely to stop 498

moving. The more links ants visit, the more time they consume. 499

Therefore, the mechanism is designed in terms of travel-time 500

consumption as 501

Ps =

∑
c

maxpower
(23)

where c is the average travel time among links of all time 502

intervals, and maxpower is a predefined parameter. Maxpower 503

determines the maximum travel time that a mobile sensor can 504

spend on its trip. Based on this logic, maxpower can decide the 505

length of a solution in some degree. 506

2) Pheromone Update Rule: The pheromone update rule 507

is a critical component of ACO and offers the possibility 508

of obtaining a better solution. In this paper, we adopted the 509

ant-weight strategy proposed in [32] and [54]. This method 510

incorporates both global and local information for pheromone 511

update as 512

Δτpm =

{
Q

R×V × Vp−Vm

Vp
, if link m is on route p

0, otherwise
(24)

where Δτpm is the increased pheromone on link m of route p, 513

Q is a constant, R is the number of routes, V is the total traffic 514

information acquisition benefits, and Vp and Vm are the benefits 515

from route p and link m, respectively. Equation (24) yields 516
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the increased pheromone of link m on route p. Pheromone517

information on link m is updated by using (25) as518

τm,d+1 = ρτm,d +
∑
p

∑
m∈p

Δτpm, ρ ∈ (0, 1) (25)

where ρ is the information evaporation speed, and
∑

p

∑
m∈p519

Δτpm represents the total pheromone update from all p of linkm.520

In this way, the ants of the next generation use this updated521

information to create new solutions close to optimality. Once522

the pheromones are updated, they are used in (21) and (22) to523

construct new routes.524

C. Hybrid Two-Stage Heuristic Algorithm525

Algorithm 1 Hybrid two-stage heuristic algorithm based on526

PSO and ACO527

Set parameters for PSO and ACO, respectively528

while ACO termination condition not met do529

Construct route530

Pass the constructed route to PSO531

Initialize stay time solution particles for PSO532

while PSO termination condition not met do533

Evaluate all particles534

Update pbest and lbest535

Update velocity and position for each particle536

end while537

Return optimal stay time solution and fitness function538

value to ACO539

Update pheromones540

end while541

As shown in Algorithm 1, the ant colony algorithm aims542

to build routes for mobile sensors. PSO tries to determine the543

link’s optimal stay time of each mobile sensor for a known544

route. The route is a critical connection between ACO and PSO.545

ACO is on the upper level and provides the routes which is used546

by PSO.547

IV. CASE STUDY548

The mobile traffic sensor routing problem is tested on the re-549

gional transportation network shown in Fig. 3. The numbers onAQ1 550

the links are the link IDs. This network has 9 nodes and 28 links.551

The S-Paramics software package is used as a simulation tool to552

generate basic traffic flow data. Time horizon is partitioned into553

24 time intervals. The duration of each time interval is 1 h. The554

proposed hybrid two-stage heuristic algorithm is employed to555

solve this problem. In our implementation, each component in556

the objective function is standardized. Therefore, the maximum557

value for each component is 1, and the total maximum value of558

the objective function is 3.559

Fig. 3. Experimental transportation network.

TABLE I
PARAMETERS OF ACO

TABLE II
PARAMETERS OF PSO

A. Parameters of Hybrid Two-Stage Heuristic Algorithm 560

The proposed hybrid two-stage heuristic algorithm sequen- 561

tially employs ACO and PSO. The parameters used in our 562

implementation are as follows: 563

maxpower is designed in ACO to resolve the “revisit” 564

issue in our mobile-sensor routing problem. In most of our 565

experiments, maxpower is set to 6 as shown in Table I. The 566

parameters of α, β, C1, C2, V0, and the size of neighborhood in 567

Table II are optimized by the genetic algorithm. The number of 568

iterations, number of ants, and number of particles are 100, 20, 569

and 15, respectively, because the algorithm can converge under 570

the setting in preliminary experiments. 571

B. Mobile Sensor Versus Fixed Sensor Under 572

Different Traffic Conditions 573

Here, experiments of different numbers of mobile sensors 574

are conducted. The number of mobile sensors ranges from 5 to 575

23. Different traffic conditions are adopted for our experiments, 576

which have free flow conditions, slight congestion, and severe 577

congestion. Travel time between links for slight congestion 578

and severe congestion is 1.5 and 2 times those of the free 579
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Fig. 4. Mobile sensor versus fixed sensor under different conditions. (a) Mobile sensor versus fixed sensor under free flow condition. (b) Mobile sensor versus
fixed sensor under slight congestion. (c) Mobile sensor versus fixed sensor under severe congestion.

flow conditions. The optimal locations of fixed sensors are580

computed for comparison with those of mobile sensors. The581

fixed traffic sensor location model in dynamic transportation582

network condition aims to maximize the covered flow under583

the constraint of the given number of fixed sensors. The manner584

of calculating the traffic information acquisition benefits is the585

same with the mobile-sensor model. The difference between the586

mobile sensors and fixed sensors is that benefits from mobile587

sensors spans various links and benefits of fixed sensors comes588

from identical links. These optimized locations are obtained by589

using genetic algorithm. Equation (6) is also used to calculate590

the traffic information acquisition benefits. With fixed sensors,591

stay time s is set to be the maximal value. In this paper, this592

value is 60 min for each time interval. Since fixed sensors593

cannot move, the total traffic information acquisition benefit is594

computed as the summation of the benefits of all time intervals.595

Fig. 4(a) shows that, under free flow condition, the mobile596

sensor outperforms the fixed sensor. For example, when the597

number of sensors is five, the objective function value of mobile598

sensors and fixed sensors is 0.7732 and 0.6363, respectively; the599

gap is about 17.7%. The whole trend of the difference between600

the mobile sensor and the fixed sensor gradually decreases.601

When the number of sensors is 23, the traffic information602

acquisition benefits are almost the same. The result implies603

that mobile sensors have advantage in flexibility compared with604

fixed sensors. Mobile sensors are good at moving; thus, they can605

move to other more informative links.606

Experiments under slight and severe congested conditions607

[see Fig. 4(b) and (c)] show that the mobile sensor outperforms608

the fixed sensor when the number of sensors is small. The inter-609

section points of the two curves are 15 and 19, respectively. The610

advantage of the mobile sensor over the fixed sensor decreases611

as the traffic becomes congested. The performance gap between612

the mobile sensor and the fixed sensor decreases from slight613

congestion to severe congestion. For example, when the number614

of sensors is 17, the traffic information acquisition benefits are615

2, 1.98, and 1.87 for free flow, slight congestion, and severe616

congestion, respectively. By contrast, the information benefits617

are 1.9 for the fixed sensor.618

The three experiments indicate that, first, when the number619

of sensors is small, the mobile sensor outperforms fixed sensor620

regardless of traffic conditions. Given the limited number of621

mobile sensors, each mobile sensor has a larger space to move622

around in, and the performance of the mobile sensor is better. 623

The mobile sensor is relatively crowded when the number of 624

sensors is large. Second, when the number of sensors increases, 625

the advantage of mobile sensors gradually decreases. Particu- 626

larly, in congested traffic conditions, travel time between link 627

becomes longer. The advantage of mobile sensors weakens. 628

The fixed sensor outperforms the mobile sensor. Finally, as a 629

general trend, the advantage of the mobile sensor to the fixed 630

sensor gradually reduces and eventually disappears as the traffic 631

condition becomes extremely congested. This observation is 632

intuitive because the mobile sensor cannot move when the 633

whole network is completely congested. 634

C. Mobile Sensor Plus Fixed Sensor Versus Fixed Sensor 635

Under Different Traffic Conditions 636

Here, the fixed sensor network is assumed to be existent, and 637

its location has been optimized. We consider adding one more 638

mobile sensor to the fixed sensor network. Two experiments are 639

conducted under free flow conditions and severe congestion. 640

Fig. 5(a) and (b) show the results. Complete usage of fixed 641

sensors is employed as a comparison. The numbers on the x- 642

axis represent the number of sensors. Adding one more mobile 643

sensor always has a better performance than complete fixed 644

sensors experiment under both free flow and congested traffic 645

conditions. The average gap of the objective function value 646

between one more mobile sensor condition and all fixed sensors 647

are 0.11 and 0.05 for free flow and congested traffic conditions, 648

respectively. Free flow conditions give more performance ad- 649

vantage than congested traffic conditions. The potential appli- 650

cation of this observation is to employ a combination of the 651

mobile sensor and the fixed sensor to enhance performance. 652

Another application is to employ a mobile sensor for temporal 653

use during the maintenance period. 654

Table III summarizes the experiments. In most cases, the 655

mobile sensor outperforms the fixed sensor. Only when traffic 656

is congested and the number of sensors is large does the mobile 657

sensor perform worse than the fixed sensor. 658

D. Robust Experiment 659

To discuss the application of the proposed mobile-sensor 660

routing problem, two different kinds of experiments are 661
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Fig. 5. One additional mobile sensor plus fixed sensor versus fixed sensor under different conditions. (a) One additional mobile sensor plus fixed sensor versus
fixed sensor under free flow condition. (b) Mobile sensor versus fixed sensor under slight congestion.

TABLE III
SUMMARY OF MOBILE SENSOR VERSUS FIXED SENSOR

TABLE IV
ROBUSTNESS OF MOBILE SENSOR

designed to show the robustness of our model. One is to662

fluctuate the link travel time with certain percentage. The other663

is to incorporate the nonrecurrent incident factor.664

1) Stochastic Fluctuation of Travel Time: Six different ex-665

periments are conducted under this category. Stochastic fluctu-666

ation of travel time are set to 10%, 20%, 40%, 60%, 80%, and667

100%, respectively, based on the severe congestion condition.668

Stochastic fluctuation is designed to increase the travel time.669

Experiments of each percentage level are conducted for 100670

times. Traffic information acquisition benefits are recalculated671

for the original route results based on the stochastic fluctu-672

ated travel time. Comparative result between the stochastic673

fluctuated travel time and the severe congestion condition is674

in Table IV.675

2) Nonrecurrent Incident Caused Congestion: In reality, 676

traffic incident is not uncommon. A stochastic nonrecurrent 677

incident is also considered. Six different experiments are con- 678

ducted, and 3, 5, 7, 10, 12, and 14 links are randomly chosen as 679

fully congested links out of all 28 links. It is not very common 680

that more than 50% of the links are fully congested in reality. 681

Fully congested links are assumed unavailable for vehicles, and 682

the travel time is set to be extremely large. Traffic information 683

acquisition benefits are also recalculated for the original route 684

results based on the case of stochastic fully congested links. As 685

to each link that is fully congested, a shortest path is generated 686

between its adjacent two links that are not blocked. Therefore, 687

a new route is produced that bypasses these fully congested 688

links. Experiments for each number of fully congested situation 689

are conducted for 100 times. Comparison between the new 690

route of nonrecurrent incident caused congestion and the severe 691

congestion condition is also in Table IV. 692

Table IV shows the results of the robust experiments. A01, 693

A02, A04, A06, A08, and A10 represent that the stochastic 694

travel-time fluctuation is 10%, 20%, 40%, 60%, 80% and 100%, 695

respectively. B03, B05, B07, B10, B12, and B14 represent that 696

3, 5, 7, 10, 12, and 14 links are fully congested, respectively. 697

The results of the performance loss compared with the severe 698

congestion condition is shown in Table IV. It is shown that 699

performance of utilizing a mobile sensor does not lose very 700

much, although there is sharp increase in stochastic travel time 701

or high probabilistic traffic incident. 702

E. Mobile Sensor Route Analysis Based on 703

Topological Position 704

The numerical results are also analyzed on the route level. All 705

links on this transportation network is divided into five areas in 706

terms of its topological position (see Table V). AQ2707

The summation of stay time in each area of a mobile sensor is 708

calculated. The percentage of stay time in each area is obtained 709

accordingly. The mean of the highest percentage of stay time 710

among mobile sensors is 68.9%, which indicates that mobile 711
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TABLE V
LINK AREA PARTITION

Fig. 6. Proportion of stay time for five areas when number of mobile sensors
is ten.

TABLE VI
CLASSIFICATION OF LINKS BASED ON HEURISTIC INFORMATION VALUE

sensors spend most stay time on an identical area. Fig. 6 shows712

the difference of the stay time proportion in each area that is713

taken as an example. The number of sensors is ten for Fig. 6.714

Let us take the second mobile sensor as a further example. The715

proportion of this mobile sensor in different areas is 0.87, 0,716

0.03, 0.10, and 0.25. The sum of these proportions exceeds 1717

because some links are located in more than one area because of718

their topological position. The situation of the other number of719

mobile sensors has a similar stay-time proportion pattern with720

Fig. 6, which shows that mobile sensors spend most time in a721

limited number of areas.722

F. Mobile Sensor Route Analysis Based on723

Heuristic Information724

In ACO, heuristic information represents prior information.725

We now classify all links into different categories based on726

different heuristic information levels. Links are classified into727

three different levels based on heuristic information value728

(see Table VI).AQ3 729

Given the link classification based on heuristic information,730

the proportion of stay time in different heuristic information731

categories can be calculated. The results are shown in Fig. 7.732

The proportion of each category fits a curve, indicating that733

the proportion of stay time in high-heuristic information areas734

decreases monotonically. The proportion of stay time in low-735

Fig. 7. Proportion of stay time for different heuristic information
classification.

Fig. 8. maxpower = 12 versus fixed sensor.

heuristic information areas increases monotonically. Thus, mo- 736

bile sensors are inclined to move in high-heuristic information 737

areas when the number of mobile sensors is small. When the 738

number of sensors is large, stay time on high-heuristic infor- 739

mation areas decreases, and that on low-heuristic information 740

areas increases. 741

G. Sensitivity Analysis of Maxpower 742

In our proposed hybrid two-stage heuristic algorithm, a 743

key component in ACO that distinguishes our algorithm from 744

traditional ACO for the VRP is the design of the parameter 745

maxpower. Maxpower represents the maximum travel time of a 746

mobile sensor on the network. Two case studies are conducted 747

for maxpower = 12 and maxpower = 6, respectively. Fig. 8 748

shows a very similar pattern with Fig. 4(a). A comparison of 749

the results of maxpower = 12 and maxpower = 6 (see Fig. 9) 750

indicates that the case of maxpower = 12 shows a better 751
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Fig. 9. maxpower = 12 versus maxpower = 6.

TABLE VII
CLASSIFICATION OF LINKS BASED ON HEURISTIC INFORMATION VALUE

performance when the number of sensors is from 5 to 15.752

This observation can be explained by the fact that, when the753

number of sensors is small, a mobile sensor is supposed to754

have a relatively long distance route to gain a high traffic755

information acquisition benefits. However, the advantage of a756

large maxpower value weakens, and a mobile sensor is expected757

to move in a limited area in that more moves increase travel-758

time wastage.759

H. Hybrid Two-Stage Algorithm Performance760

To show the performance of our proposed hybrid algorithm,761

the results of simulated annealing and the genetic algorithm are762

employed for comparison. Experiments with different number763

of mobile sensors are conducted in both the simulated network764

and Nguyen–Dupius network[55]. All these experiments are765

done for 20 times, and statistics are extracted accordingly.766

Three statistics are mean, deviation, and best value of the 20767

experiments.768

Table VII shows these results. For the “ Instances ” column769

of Table VII, “SN-x” represents the experiments on simulated770

network with x number of mobile sensors. “ND-x” represents771

the experiments on the Nguyen–Dupius network with x number772

of mobile sensors. HB, GA and SA represents hybrid two-stage773

heuristic algorithm, genetic algorithm, and simulated anneal-774

ing, respectively. The results show that the proposed algorithm775

outperforms the GA and SA in all three criteria.776

Fig. 10. Computational time comparison between sequential and parallel
implementation.

Fig. 11. Mobile sensor versus fixed sensor for the Sioux–Fall network.

Regarding the computational time, it takes 0.89 h when the 777

number of mobile sensors is five. A parallel implementation in 778

a four-core machine decreases the computational time signifi- 779

cantly to 0.22 h. A comparison between the sequential and the 780

parallel implementation is shown in Fig. 10. 781

Fig. 10 shows that computational time dramatically de- 782

creases after the parallel implementation. As to sequential 783

implementation, computational time increases almost linearly 784

with the increase in the number of mobile sensors. However, 785

computational time keeps relatively stable for the parallel 786

implementation. The average time saving percentage is 73%, 787

which is significant. 788

1) Applicability in Practical Problems: Here, the Sioux–Fall 789

network is employed to show the practicability of our algo- 790

rithm. The Sioux–Fall network is widely used in transportation. 791

It has 76 links and 24 nodes. This experiment is conducted 792

under free flow condition. 793

In this experiment, different numbers of mobile sensors are 794

tested: 15, 25, 35, 45, 55, and 65. When the number of sensors is 795

35, the traffic information acquisition benefits is 1.87, which is 796

more than half of total benefits. The mobile sensor outperforms 797

the fixed sensor under free flow traffic conditions (see Fig. 11). AQ4798
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This numerical experiment shows that our proposed algorithm799

can be applied to practical transportation networks.800

V. CONCLUSION801

Traditionally, fixed traffic sensors are employed to collect802

traffic information. Given the lack of flexibility of fixed sensors,803

the mobile traffic sensors are introduced to enhance the traffic804

surveillance effect. This paper aims to design optimal routes for805

mobile traffic sensors to maximize traffic information acquisi-806

tion benefits.807

By considering the dynamics of transportation networks, we808

have proposed an information-capture-oriented mobile-sensor809

routing problem. Unlike traditional VRPs, our problem has two810

kinds of decision variables: the route variable and the stay-811

time variable. An objective function is designed to measure812

the traffic information acquisition benefits. A hybrid two-stage813

heuristic algorithm that combines PSO and ACO is designed814

to solve this mobile-sensor routing problem effectively. The815

mobile sensor outperforms the fixed sensor network in most816

cases. The route of a mobile sensor is normally restricted in a817

portion of the network. The sensitivity analysis of the parameter818

maxpower is also analyzed.819

The proposed problem differs from traditional VRPs in that it820

assumes that mobile sensors can benefit more if they stay on the821

customer side longer (the link is treated as the customer). Mo-822

bile sensor is helpful for both urban and freeway transportation823

network surveillance. In reality, the mobile sensors can be used824

alone or serves as a supplement to the fixed sensor network.825

The proposed information-capture-oriented VRP is applicable826

in many other applications. Future direction may consider the827

stochastic factor of the transportation network and design an828

optimal mobile-sensor route that maximizes expected traffic829

information acquisition benefits.830
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Mobile Traffic Sensor Routing in Dynamic
Transportation Systems

1

2

Ning Zhu, Yang Liu, Shoufeng Ma, and Zhengbing He3

Abstract—In transportation networks, traditional fixed sensors4
are used to monitor the operation of transportation systems.5
However, fixed sensors cannot move once they are installed. In6
this paper, the motion ability of traffic sensors is introduced to7
improve the performance of transportation network surveillance.8
A mobile traffic sensor routing problem is proposed, modeled as9
a novel vehicle routing problem. A measure of traffic information10
acquisition benefits is developed and used to gauge the surveillance11
performance. To solve this mobile-sensor routing problem, a hy-12
brid two-stage heuristic algorithm is designed, which is based on13
particle swarm optimization and ant colony optimization. Numer-14
ical experiments are conducted. The results show that the mobile15
traffic sensor has a better network surveillance performance than16
the fixed sensor in most experimental cases.17

Index Terms—Ant colony optimization (ACO), hybrid two-stage18
heuristic algorithm, mobile traffic sensor routing, particle swarm19
optimization (PSO), vehicle routing problem (VRP).20

I. INTRODUCTION21

TRAFFIC information significantly affects transportation22

management and control. To obtain real-time traffic in-23

formation, transportation surveillance network is necessary.24

Currently, traffic sensors serve as an important way to gain25

traffic information. Due to limited budgets, traffic sensors can-26

not be deployed everywhere in transportation networks. Traffic27

information collected from optimal sensor locations is used28

to provide real-time traffic data for various traffic information29

applications, such as flow observation and estimation [including30

origin–destination (OD) trips, route flow, and link flow], travel-31

time estimation, bottleneck identification, and so on.32

The sensor location problem aiming to observe and esti-33

mate traffic flow has attracted considerable attention for sev-34

eral decades. To estimate OD, four important location rules35

and corresponding mathematical models that implement these36

rules are proposed [1]. A two-stage model [2] is presented to37

determine optimal sensor placement location to estimate OD38
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demand. A mathematical model is formulated to intercept all or 39

as many OD trips as possible [3]. To infer all link flows from 40

partial observed links, an optimal location model on nodes [4] 41

is determined to infer link flow in a transportation network. 42

The linear algebra method is used to find an optimal sensor 43

location to infer network-wide flow [5]. Regarding the path flow 44

estimation, an optimal sensor deployment method is proposed 45

so that path flow can be distinguished and estimated in [6] 46

and [7]. A sensor location problem for flow observation and 47

estimation is well reviewed in [8]. 48

The travel-time estimation problem is another important di- 49

rection for sensor location issues. The quality benefit of travel- 50

time estimation is maximized by optimally locating automatic 51

vehicle identification readers [9]. A simulation tool is employed 52

in [10] and [11] to figure out the relationship between travel 53

characteristics and sensor location. The impact of sensor spac- 54

ing on travel-time estimation is investigated [12], [13]. A se- 55

quential modeling framework for optimal sensor location is also 56

proposed [14]. Objective applications include ramp metering 57

control and travel-time estimation. 58

Most of these studies are conducted in a static and determin- 59

istic transportation environment. Other studies in the field of 60

traffic sensor location problem consider dynamic and stochastic 61

environmental factors that influence sensor location patterns. 62

The optimal sensor location problem is studied for the purpose 63

of estimation in a dynamic transportation environment in [15] 64

and [16]. Sensor failure [17] is considered in a sensor location 65

model to achieve a more reliable location pattern. Demand 66

estimation uncertainty is minimized in [18]. A nonlinear two- 67

stage stochastic model is proposed in [19] to maximize the OD 68

coverage and information gain against random events. 69

Most studies in the transportation field investigate how to 70

maximize the usage of fixed sensors. Fixed traffic sensors 71

cannot be relocated once installed. In the last several decades, 72

mobile sensors have attracted considerable attention in other 73

fields such as communication and automation. Several seed 74

nodes [20] have been used to relocate all sensors in a network 75

without additional hardware. A distributed energy-efficient de- 76

ployment algorithm [21] is proposed for mobile sensors and 77

intelligent devices in a general network. Distributed algorithms 78

for mobile-sensor networks are presented against events that 79

occur frequently [22]. In the field of information gathering, 80

a delay/fault-tolerant mobile-sensor network is proposed [23]. 81

Most studies of mobile sensors focus on network or algorithm 82

design for different purposes. Only the work in [24] has used 83

sensor-equipped vehicles to gather data from vibration and GPS 84

sensors. Such detection aims to identify potholes and other 85

severe road surface anomalies. Other mobile sensors in the field 86

1524-9050 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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of transportation include airborne imagery sensors [25], [26]87

and GPS-based traffic probes [27].88

Mobile traffic sensors are assumed to have the surveillance89

ability of recording traffic flow and identifying license plates so90

that travel-time information can be obtained. We assume that91

mobile sensors are special vehicles with equipped surveillance92

device. The special vehicles are managed by transportation93

authorities. Probe vehicles equipped with sensor devices can94

be considered traffic mobile sensors. We model the motion of a95

mobile traffic sensor in a transportation network as a particular96

vehicle routing problem (VRP) that has a long research history.97

The first study can be traced back to [28] and [29], which fo-98

cused on a large-scale traveling-salesman problem. In general,99

the traditional VRP can be classified into four categories [30].100

• Capacity- and Distance-Constrained VRP (CVRP). The101

CVRP determines the routes for a fleet of vehicles without102

exceeding the capacity and distance constraints of each103

vehicle. An exact algorithm is proposed in [31] to solve the104

CVRP. Exact results for the CVRP are impossible even for105

medium networks. Several heuristic methods have been106

developed to solve the CVRP. These heuristics can be107

classified into ant colony optimization (ACO) [32], [33],108

simulated annealing [34], neighborhood search [35], [36],109

and particle swarm optimization (PSO) [37].110

• VRP with Time Windows (VRPTW). The VRPTW is a111

problem in which routes should be designed in a way112

that each point is visited only once by exactly one vehicle113

within a given time interval. Similar to other traditional114

VRP and its variants, the VRPTW cannot be solved with115

an exact solution. Therefore, several state-of-the-art meta-116

heuristics have been proposed, such as ACO [38], tabu117

search [39], and simulated annealing [40].118

• VRP with Backhauls (VRPB). The VRPB differs from the119

classic VRP mainly because, on each route, the backhaul120

customers are visited after all linehaul customers. An121

exact algorithm is given for VRPB for small and medium122

networks [41]. Recent studies about VRPB include [42]123

and [43].124

• VRP with Pickup and Delivery (VRPPD) [44]. For the125

VRPPD, a request is defined by a pickup point and a126

related delivery point. A demand is defined as goods127

or service transportation between the pickup point and128

delivery point. Recent advances in VRPPD are reported129

in [37], [45], and [46].130

Stochastic and dynamic VRPs have also been developed [47],131

[48]. A good taxonomic review for VRP is given in [49]. In [30]132

and [50], VRPs are comprehensively reviewed. Our model does133

not fit into any of these categories.134

In this paper, the mobile traffic sensor has two different states135

on the transportation network. One is traveling on the network,136

and the other is staying on the links and collecting informa-137

tion simultaneously. We also assume that traffic information138

acquisition benefits are related to the stay time of links. In139

VRP context, the objective function depends on the service time140

of customers, which is the stay time of links. Mobile sensor141

captures as much traffic information as possible. The mobile-142

sensor routing problem proposed is named as the information-143

capture-oriented mobile-sensor routing problem (IMRP). The 144

IMRP differs from the traditional VRP due to the following. 145

• Most customers in traditional VRPs need only a one- 146

time service. In our IMRP model, the stay time on a link 147

crucially affects the objective function. One link can be 148

visited by one mobile sensor at different time more than 149

once. However, from the basic idea of traffic information 150

collection, it is wasteful that more than one mobile sensors 151

visit an identical link at the same time. Duplicate obser- 152

vations do not increase the information collection per- 153

formance. Longer observation time increases information 154

acquisition benefits. 155

• A comparison with traditional VRPs indicates that most of 156

them focus on minimizing travel time or travel distance. In 157

this paper, cost pertaining to vehicle routing is unimpor- 158

tant. What matters is captured traffic information. 159

• One constraint for most VRPs is the number of vehicles. In 160

our model, another constraint is included, i.e., the travel- 161

time constraint. The travel time from one link to another 162

link at specific departure time t should be consistent 163

with the traffic condition of the dynamic transportation 164

network. 165

• The total travel time and stay time of the mobile sensor 166

should not exceed a predefined value. 167

The advantages of mobile traffic sensors are as follows. First, 168

a transportation network is a dynamic environment. Network 169

states differ among different time intervals. Fixed sensor net- 170

works may offer good surveillance performance in one state 171

but bad at another. Mobile traffic sensors avoid this weakness 172

of fixed sensor networks. Second, fixed sensors are subject 173

to failure [51]. Traffic sensor network maintenance is a time- 174

consuming job. Mobile traffic sensors are flexible and can be 175

used as complements to provide surveillance service temporar- 176

ily. Although mobile traffic sensors have several advantages, 177

few studies have focused on them, not to mention their routing 178

problem. This paper aims to fill this gap. 179

This paper uses mobile traffic sensors to collect real-time 180

information. Dynamic transportation networks are considered 181

in our modeling. A group of optimal mobile-sensor routes is 182

to be designed by maximizing the benefits of traffic informa- 183

tion acquisition. The remainder of this paper is organized as 184

follows. In Section II, we measure traffic information acqui- 185

sition benefits and develop a mobile-sensor routing model. In 186

Section III, a hybrid two-stage heuristic algorithm is proposed 187

by combining PSO and ACO. In Section IV, numerical ex- 188

amples are provided to demonstrate the effectiveness of the 189

proposed model and algorithm. Section V concludes and sum- 190

marizes the main outcomes in this paper. 191

II. MOBILE TRAFFIC SENSOR ROUTING PROBLEM 192

Routing mobile sensors aim to provide effective network 193

surveillance. In contrast to fixed traffic sensors, mobile traffic 194

sensors can move in the network. To collect traffic information 195

as much as possible, the main problem of using mobile-sensor 196

networks is to design a route for each mobile sensor. Statisti- 197

cally, more samples collected on a link leads to a more accurate 198

estimation of the traffic state. Given that mobile sensor has a 199
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constant sampling rate, the mobile sensor’s stay time on links200

significantly affects traffic information acquisition. Therefore,201

decision variables in the mobile traffic sensor routing problem202

are of two kinds: a route variable that decides which route to go203

for each mobile sensor and the stay time of mobile sensor on204

each link of the route. Note that, this paper, visiting a link or205

arriving at a link means that the mobile traffic sensor is going206

to move to the middle point of a link. This assumption does not207

influence the traffic information collection efficiency. On the208

other hand, it simplifies the calculation of the travel distance209

between adjacent links. More than one mobile sensor staying on210

the same link at the same time does not make traffic information211

surveillance performance better. Duplicate stay of more than212

one mobile sensors in an identical link at the same time is a kind213

of resource waste. The total time a mobile sensor can spend is214

defined as the summation of travel time and stay time. The total215

time is not allowed to exceed a predefined value.216

In this paper, the objective traffic applications include link217

flow inference, path travel-time estimation, and OD estima-218

tion. These three applications require observations on the link,219

path, and network levels. A dynamic transportation network is220

adopted. We assume the time-sliced OD trips. For each time221

interval of a day and each link, OD demand is assumed stable222

from a long-term perspective. Further, we assume that the flow223

volume assigned on each link follows a probability distribution.224

This assumption is reasonable because the OD trips of each225

time interval are not strictly constant but has slight perturbation.226

Let us denote a transportation network as G(N, A), where227

N represents the set of intersections in a network and A228

represents the set of links that connect intersections. Mobile229

sensors travel from one link to another to obtain real-time traffic230

information on links. The total information acquisition benefits231

are determined by the total stay time on all observed links232

among all time intervals. First, the sample collection period is233

assumed fixed and dependent on the configuration of devices.234

A relationship between sample size and traffic state observation235

accuracy is built in Section II-A. Traffic state observation accu-236

racy is used as a measure of information acquisition benefits.237

Second, the benefits of information acquisition are assumed238

determined on the link, path, and network levels, respectively.239

The measure of information acquisition benefits is developed240

accordingly.241

A. Sample Size and Estimation Accuracy242

In practice, link traffic states, such as link traffic flow and243

travel speed, for each time interval on a daily basis experience244

perturbation. We assume that authentic link traffic flow and link245

travel speed information follow a deterministic but unknown246

probability density distribution. More observations increase247

estimation accuracy for these unknown distributions. Thus,248

longer stay time increases estimation accuracy. Here, we figure249

out the impact of sample size on estimation accuracy. From250

the perspective of statistics, the basic idea behind sample size251

determination is that a large sample size increases the degrees252

of freedom and thus reduces the confidence interval. Assume253

that we have prior information about the mean and deviation of254

traffic flow or travel speed distribution. We denote prior mean255

Fig. 1. t distribution sample size determination.

and deviation as μ and σ, respectively. The ground-truth value 256

of the mean and deviation is unknown. Sampling is used to 257

update prior mean and deviation. The longer the time spent on 258

data collection, the higher the estimation accuracy we obtain. 259

Data collected are assumed error free. Mean and deviation 260

estimation is used to illustrate the relationship between sample 261

size and observation accuracy. 262

Mean Estimation: Consider a sample (X1, X2, X3, . . . , Xn) 263

with size n from an unknown distribution. If we manipulate the 264

definition for the t statistic, we obtain 265

X̄ − μ

S/
√
n

∼ t(n− 1). (1)

The right-hand side of (1) is t(n− 1), which is not dependent 266

on any unknown parameters. The confidence level is denoted α. 267

The half-length of the confidence interval is computed as 268

d =
S√
n
tα/2(n− 1). (2)

Because prior information is given, sample standard variance 269

S can be substituted by prior standard variance σ as 270

d =
σ√
n
tα/2(n− 1). (3)

Deviation Estimation: Following the similar logic for mean 271

estimation to estimate deviation, we calculate 272

P
{
χ2
1−α/2(n− 1) ≤ (n−1)s2/σ2 ≤ χ2

α/2(n−1)
}
=1−α.

(4)

After some simple steps of manipulation, the length of the 273

confidence interval can be stated as 274

d =
(n− 1)s2

χ2
α/2(n− 1)

− (n− 1)s2

χ2
1−α/2(n− 1)

. (5)

In Figs. 1 and 2, it is shown that the confidence interval in- 275

creases with deviation under the condition of identical degrees 276

of freedom. More observations increase estimation accuracy. 277
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Fig. 2. Chi-square sample size determination.

To integrate this observation into our model, the benefit from278

the observations of a link is assumed as a nonlinear monotonic279

increasing function of the mobile sensor’s stay time. We first280

use a hyperbola to fit the curve shown in Fig. 2 because the281

deviation is seen more informative. The R-square of this fit is282

greater than 99%, which shows a very good fitting performance.283

However, this hyperbola monotonically decreases and thus does284

not satisfy our requirements. After some simple manipulation285

of curve reversal and horizontal shift, we obtain a traffic infor-286

mation acquisition benefit curve as287

f(s) =

{
p1s+p2

s+q1
, s > 0

0, s = 0
(6)

where s represents the stay time of mobile sensors on a link.288

p1, p2, and q1 are the parameters from curve fitting. Deviation289

information σ is embedded in these three parameters. The290

marginal benefit of observation decreases as the first derivative291

of (6) decreases. Different σ results in different parameter292

combinations of (6).293

B. Link Importance in Transportation Network294

To obtain a good insight into the link contribution, the link295

importance of the transportation network should be identified.296

The contribution of a single link to the transportation network297

can be categorized into three aspects: 1) link level; 2) path level;298

and 3) network level. These three aspects are elaborated in the299

following.300

1) Link Importance on Link Level: Single-link observation301

is helpful because it can be used together with historical data to302

contribute to link flow estimation. One possible application that303

uses link flow information is network-wide link flow inference304

[5]. We adopts a link-based V/C ratio to identify the contribu-305

tion of links [52], where V is the link volume and C is the link306

capacity. The traffic information acquisition benefits on the link 307

level is formulated as 308

bl = αl

∑
a∈A

Va

Ca
xa (7)

where bl is the benefits based on the link level, αl is the 309

nonnegative coefficient of the link-level contribution, and Va 310

and Ca are the link volume and capacity, respectively, on link a. 311

xa = 1 shows that an observation is made on link a; otherwise, 312

xa = 0. 313

2) Link Importance on Path Level: We assume that traffic 314

mobile sensors have the ability to record the vehicle’s position 315

as the vehicle passes. If two mobile sensors at the same time 316

interval stay on two different links on one path, travel-time 317

information can be obtained for this route between the first 318

(head) sensor and the last (rear) sensor. We use a way similar 319

to that in [17] to measure route coverage benefits from mobile 320

sensors. The benefit on path level can be measured by 321

bp = αp

∑
p∈PS

(Pp, r − Pp,h) (8)

where bp represents the benefits obtained from the views of 322

travel-time estimation; αp denotes the nonnegative coefficient 323

of the path-level contribution; PS is the path set; Pp, r and Pp,h 324

are the rear and head positions of the mobile sensor on specific 325

path p, respectively; and Pp, r − Pp,h shows the distance that 326

mobile sensors on this specific path p can cover. 327

More factors and formulations can be applied to assess traffic 328

information acquisition benefits from the perspective of travel 329

time. One possible extensive factor for travel time is mobile- 330

sensor failure. Long distance between two mobile sensors 331

increases inaccuracy in travel-time estimation. In this case, 332

more complicated benefit expression should be formulated by 333

considering the aforementioned factors. 334

3) Link Importance on Network Level: Regarding the link 335

observation’s contribution to the transportation network level, 336

two factors have significant effects. One is transportation net- 337

work topology, and the other is travel demand assigned to the 338

transportation network. For each time interval, travel demand 339

is deemed relatively stable in this paper. One result derived 340

from this assumption is that the OD-link coincident matrix 341

is constant for each time interval. According to Yang’s four 342

rules for sensor location [1], sensors should be placed on links 343

with a higher number of OD pairs passed. One potential traffic 344

application from network-level benefits is OD estimation. An 345

example for the OD-link coincident matrix is shown as 346⎛
⎜⎜⎜⎝

1 0 1 0 1
0 1 0 0 1
1 0 1 1 1
0 1 0 0 1
0 0 1 0 0

⎞
⎟⎟⎟⎠ . (9)

This small transportation network has five OD pairs and five 347

links. The number of OD pairs passing through link1, link2, 348

link3, link4, and link5 are 2, 2, 3, 1, and 4, respectively. The 349

total number of OD pairs passing through a link reflects the 350

combinatorial effects for both transportation network topology 351
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factors and traffic demand factors. The number of OD pairs that352

pass a specific link can be taken as a measure of link importance353

on the network level. The benefits on the network level are354

formulated as355

bn = αn

∑
a∈A

Baxa (10)

where bn is the benefits obtained from the network level, A is356

the set of links, Ba represents the number of OD pairs passing357

through link a, αn is the nonnegative coefficient of network-358

level contribution, and xa = 1 represents an observation exists359

on link a.360

C. Mathematical Formulation361

Mathematical formulation is stated as362

Min f(s) =
∑
t∈T

(
αl

∑
a∈A

Va,t

Ca
f(sa,t) + αn

∑
a∈A

Ba,tf(sa,t)

)

+
∑
t∈T

⎛
⎝αp

∑
p∈PSt

(Pp,r − Pp,h)f(sp,t))

⎞
⎠ (11)

subject to363

uts, kv
ai, aj

(
Gts, kv

ai + τai, aj

(
Gts, kv

ai

))
= Lts+1, kv

aj ∀ai; ∀aj; ∀ts; ∀kv (12)

stsai, kv = Gts
ai, kv − Lts

ai, kv ∀ai; ∀kv; ∀ts. (13)∑
aj �=ai

uts, kv
aj, ai =

∑
ak �=ai

uts+1, kv
ai, ak ∀ai; ∀ts; ∀kv. (14)

∑
ai

u1, kv
a0, ai = 1 ∀kv. (15)

∑
ts

∑
ai

uts, kv
ai, a0 = 1 ∀kv. (16)

uts, kv
ai, aj ∈ {0, 1} ∀ai; ∀aj; ∀kv; ∀ts. (17)

Gts, kv
ai Lts, kv

ai ≥ 0 (18)

where ai, aj, and ak are the link indexes, a0 is the depot index,364

kv is the mobile-sensor index, and ts is a sequential index365

of the visited links. For example, there is a route as depot →366

link1 → link2 → link1 → link3 → depot. The corresponding367

sequential index for this route is 1, 2, 3, 4, 5, and 6, respectively.368

In our model, multiple visits of a identical link at different times369

are allowed. The sequential index for the first visit of link1 is 2,370

and the index for the second visit of link1 is 4. Different visit371

indexes are allowed to be associated with identical link. For372

the purpose of modeling, ts is chosen as a big number but do373

not significantly increase the model size. Gts, kv
ai and Lts, kv

ai are374

decision variable indicating the departure time and the arrival375

time of vehicle kv on link ai for its ts visit. Gts, kv
ai = 0 and376

Lts, kv
ai = 0 if vehicle kv does not leave or arrive at link ai at377

its ts visit; otherwise, Gts, kv
ai > 0, and Lts, kv

ai > 0. uts, kv
ai, aj is a378

binary variable. uts, kv
ai, aj = 1 means vehicle kv moves from link379

ai to link aj for its ts visit; otherwise, uts, kv
ai, aj = 0. τai, aj(t) is a 380

piecewise constant function that indicates the travel time from 381

link ai to link aj starting from departure time t. 382

The constraints are defined as follows. Mobile sensors’ stay 383

time on links must allow for travel time between links (12). 384

For constraint (13), vectors G and L contain information on 385

departure time and arrival time for all mobile sensors’ all visits 386

on each link; stay time information s can be easily obtained 387

from G and L. s is also used as an objective function to compute 388

the total traffic information acquisition benefits. If a mobile 389

sensor arrives at a link, it must also depart from that link (14); 390

the mobile sensor must start and end at the depot by (15) and 391

(16). Constraint (16) also indicates that the mobile sensor can 392

only return to the depot once. It is not allowed to return to the 393

depot more than once. The type and domain of the decision 394

variables are indicated in (17) and (18). 395

Objective function (11) is reformulated aiming to incorpo- 396

rate the stay-time-based traffic information acquisition bene- 397

fits. It considers the aforementioned statistical properties of 398

observations and three popular traffic applications. These three 399

traffic applications are integrated with different weighs, which 400

are specified by the transportation agencies. Since s contains 401

information about stay time of each mobile sensor of each 402

link at each time interval, the index system can be reused to 403

include the link index a and the time interval index t. sa, t 404

represents the stay time of traffic mobile sensors on link a at 405

time interval t. sp, t is the stay time of path p at time interval t 406

and is calculated by the shared stay time of two mobile sensors. 407

For example, if one mobile sensor spends the first 40 min of 408

a time interval in a path and another mobile sensor spends the 409

last 40 min of an identical time interval on the same path (the 410

time interval is assumed 1 h), the shared stay time is 20 min, 411

which is the common time of these two mobile sensors on this 412

path. Pp, r − Pp,h is the longest covered distance of the two 413

observations of path p. Regarding the final objective function 414

(11), f(sa, t) and f(sp, t) represent the impact of the mobile 415

sensor’s stay time of each link and each time interval on the 416

transportation network-wide information acquisition benefits, 417

as shown in (6). 418

This formulation only provides a framework of information 419

acquisition benefits based on mobile-sensor routing patterns. 420

This mathematical formulation is used to describe proposed 421

mobile-sensor routing problem and is not directly used for 422

problem solving. 423

III. HYBRID TWO-STAGE HEURISTIC ALGORITHM 424

The VRP is an NP-hard problem. A hybrid two-stage heuris- 425

tic algorithm is proposed to solve the IMRP. The proposed 426

model requires the computation of both vehicle route and 427

stay time. The ant colony algorithm performs well at finding 428

optimal or near-optimal routes for the VRP. However, the ant 429

colony algorithm is unsuitable for solving continuous problems 430

that refer to stay-time decision-making in our model. PSO 431

is a population-based stochastic approach suitable for solving 432

continuous optimization problems. A hybrid algorithm that 433

combines the ant colony algorithm and the PSO is designed to 434
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solve our proposed problem. The vehicle route is determined435

by the ant colony algorithm. The PSO is applied to figure out436

the optimal stay time on a given route. A fitness function is437

returned to the ant colony algorithm to update pheromone and438

next-round iteration.439

A. Particle Swarm Algorithm440

The mobile sensor’s total time should not exceed a prede-441

fined value. The initial solution for a given route is set as the442

maximum travel time among all time intervals, i.e.,443

hi,m =

⎧⎪⎨
⎪⎩ θ1

W−
∑

k≤M−1

max tk

M , m ≤ M − 1
W −

∑
m≤M−1

hi,m −
∑

m≤M−1

em, m = M

(19)

where h represents the stay-time vector of particles that con-444

tains the stay time on each link of a given route; hi,m is the445

stay time of the mth link of the ith route, which is a value;446

M is the particle dimensionality, which is the number of links447

on a specific route; W is the predefined total time, which is the448

summation of the travel time and the stay time; θ1 is a randomly449

generated value ranging from 0 to 1; max tk is the largest travel450

time from the kth link to the (k + 1)th link among all time451

intervals; and em is the real travel time from the mth link to the452

(m+ 1)th link after the first m links’ stay time is determined.453

The particle moves toward the optimum in terms of velocity454

and position. At each iteration, particle velocity and position455

are updated in terms of456

vi, d =Zvi, d−1 + C1 × θ2 × (pbesti, d−1 − hi, d−1)

+ C2 × θ × (lbesti, d−1 − hi, d−1)

vi, d =

{
vi, d, vi, d ≤ vmax

vmax, d, vi, d > vmax

hi, d =hi, d−1 + vi, d (20)

where d represents the dth generation for the ACO algorithm;457

hi, d represents the stay time of the ith particle of the dth gen-458

eration; hi, d is a vector, and each element of hi, d is hi,m; vi, d459

is the ith particle’s velocity at the dth generation; pbesti, d−1 is460

the personal optimal solution found by the ith particle among461

its own historical solutions, and lbesti, d−1 is the local optimal462

solution; Z is a positive inertia parameter; C1 and C2 are463

positive constants; and θ2 is a random generated value ranging464

from 0 to 1. vi, d is updated in the first expression of (20). vi, d465

is further restricted by vmax, which is a predefined particle at466

maximal speed. vi, d is used to update st.467

B. Ant Colony Algorithm468

1) Route Construction Rule: A vector is used to represent469

a vehicle route. One example of a route solution is [1 2 7 8470

1 0 1 9 2 3 1 0], where 1 denotes the vehicle depot and 0 is471

used as a separator to separate different mobile sensors. The472

other numbers in this vector are link IDs in the transportation473

network. We require that all vehicles should depart from the 474

vehicle depot and return to the depot again before the total time 475

is reached. In the example, two vehicles are separated by 0, and 476

the routes for these two vehicles are 1-2-7-8-1 and 1-9-2-3-1, 477

respectively. 478

Based on the idea from [53], mobile-sensor routes are con- 479

ducted as follows. The ants sequentially choose links to visit. 480

The state transition rule is used to give the probability with 481

which the ants decide to visit the next link, i.e., 482

S =

{
arg max

m∈J(a)
ταm,d × ηβm, q ≤ q0

s, q > q0
(21)

where S is the next link determined by the right-hand side of 483

(21); J(a) is the candidate link set of link a; S = 0 represents 484

that the mobile sensor returns to the depot; d represents the dth 485

generation of the ACO algorithm; τ is the pheromone; η is the 486

heuristic information; α and β are the parameters that control 487

the influence of the pheromone and heuristic information, re- 488

spectively; and q is a random variable. q0 is a predetermined 489

parameter (0 ≤ q0 ≤ 1). Ps is the probability that a mobile 490

sensor chooses to stop moving. The probability of choosing s 491

as the next visit link is determined by P . P is formulated as 492

P =

⎧⎨
⎩

(1 − Ps)
τα
s, d

×ηβ
s∑

m∈J(a)

τα
m, d

×ηβ
m

, s ∈ J(a)

Ps, s = 0

. (22)

In our model, a mobile sensor can visit the same link more 493

than once. Therefore, a mechanism that stops the mobile sensor 494

should be designed. A concept of physical power is created, 495

as shown in (22) and defined in (23). The physical power of 496

ants decreases when they make more visits. Given the gradual 497

increase in the fatigue degree, ants are more likely to stop 498

moving. The more links ants visit, the more time they consume. 499

Therefore, the mechanism is designed in terms of travel-time 500

consumption as 501

Ps =

∑
c

maxpower
(23)

where c is the average travel time among links of all time 502

intervals, and maxpower is a predefined parameter. Maxpower 503

determines the maximum travel time that a mobile sensor can 504

spend on its trip. Based on this logic, maxpower can decide the 505

length of a solution in some degree. 506

2) Pheromone Update Rule: The pheromone update rule 507

is a critical component of ACO and offers the possibility 508

of obtaining a better solution. In this paper, we adopted the 509

ant-weight strategy proposed in [32] and [54]. This method 510

incorporates both global and local information for pheromone 511

update as 512

Δτpm =

{
Q

R×V × Vp−Vm

Vp
, if link m is on route p

0, otherwise
(24)

where Δτpm is the increased pheromone on link m of route p, 513

Q is a constant, R is the number of routes, V is the total traffic 514

information acquisition benefits, and Vp and Vm are the benefits 515

from route p and link m, respectively. Equation (24) yields 516
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the increased pheromone of link m on route p. Pheromone517

information on link m is updated by using (25) as518

τm,d+1 = ρτm,d +
∑
p

∑
m∈p

Δτpm, ρ ∈ (0, 1) (25)

where ρ is the information evaporation speed, and
∑

p

∑
m∈p519

Δτpm represents the total pheromone update from all p of linkm.520

In this way, the ants of the next generation use this updated521

information to create new solutions close to optimality. Once522

the pheromones are updated, they are used in (21) and (22) to523

construct new routes.524

C. Hybrid Two-Stage Heuristic Algorithm525

Algorithm 1 Hybrid two-stage heuristic algorithm based on526

PSO and ACO527

Set parameters for PSO and ACO, respectively528

while ACO termination condition not met do529

Construct route530

Pass the constructed route to PSO531

Initialize stay time solution particles for PSO532

while PSO termination condition not met do533

Evaluate all particles534

Update pbest and lbest535

Update velocity and position for each particle536

end while537

Return optimal stay time solution and fitness function538

value to ACO539

Update pheromones540

end while541

As shown in Algorithm 1, the ant colony algorithm aims542

to build routes for mobile sensors. PSO tries to determine the543

link’s optimal stay time of each mobile sensor for a known544

route. The route is a critical connection between ACO and PSO.545

ACO is on the upper level and provides the routes which is used546

by PSO.547

IV. CASE STUDY548

The mobile traffic sensor routing problem is tested on the re-549

gional transportation network shown in Fig. 3. The numbers onAQ1 550

the links are the link IDs. This network has 9 nodes and 28 links.551

The S-Paramics software package is used as a simulation tool to552

generate basic traffic flow data. Time horizon is partitioned into553

24 time intervals. The duration of each time interval is 1 h. The554

proposed hybrid two-stage heuristic algorithm is employed to555

solve this problem. In our implementation, each component in556

the objective function is standardized. Therefore, the maximum557

value for each component is 1, and the total maximum value of558

the objective function is 3.559

Fig. 3. Experimental transportation network.

TABLE I
PARAMETERS OF ACO

TABLE II
PARAMETERS OF PSO

A. Parameters of Hybrid Two-Stage Heuristic Algorithm 560

The proposed hybrid two-stage heuristic algorithm sequen- 561

tially employs ACO and PSO. The parameters used in our 562

implementation are as follows: 563

maxpower is designed in ACO to resolve the “revisit” 564

issue in our mobile-sensor routing problem. In most of our 565

experiments, maxpower is set to 6 as shown in Table I. The 566

parameters of α, β, C1, C2, V0, and the size of neighborhood in 567

Table II are optimized by the genetic algorithm. The number of 568

iterations, number of ants, and number of particles are 100, 20, 569

and 15, respectively, because the algorithm can converge under 570

the setting in preliminary experiments. 571

B. Mobile Sensor Versus Fixed Sensor Under 572

Different Traffic Conditions 573

Here, experiments of different numbers of mobile sensors 574

are conducted. The number of mobile sensors ranges from 5 to 575

23. Different traffic conditions are adopted for our experiments, 576

which have free flow conditions, slight congestion, and severe 577

congestion. Travel time between links for slight congestion 578

and severe congestion is 1.5 and 2 times those of the free 579
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Fig. 4. Mobile sensor versus fixed sensor under different conditions. (a) Mobile sensor versus fixed sensor under free flow condition. (b) Mobile sensor versus
fixed sensor under slight congestion. (c) Mobile sensor versus fixed sensor under severe congestion.

flow conditions. The optimal locations of fixed sensors are580

computed for comparison with those of mobile sensors. The581

fixed traffic sensor location model in dynamic transportation582

network condition aims to maximize the covered flow under583

the constraint of the given number of fixed sensors. The manner584

of calculating the traffic information acquisition benefits is the585

same with the mobile-sensor model. The difference between the586

mobile sensors and fixed sensors is that benefits from mobile587

sensors spans various links and benefits of fixed sensors comes588

from identical links. These optimized locations are obtained by589

using genetic algorithm. Equation (6) is also used to calculate590

the traffic information acquisition benefits. With fixed sensors,591

stay time s is set to be the maximal value. In this paper, this592

value is 60 min for each time interval. Since fixed sensors593

cannot move, the total traffic information acquisition benefit is594

computed as the summation of the benefits of all time intervals.595

Fig. 4(a) shows that, under free flow condition, the mobile596

sensor outperforms the fixed sensor. For example, when the597

number of sensors is five, the objective function value of mobile598

sensors and fixed sensors is 0.7732 and 0.6363, respectively; the599

gap is about 17.7%. The whole trend of the difference between600

the mobile sensor and the fixed sensor gradually decreases.601

When the number of sensors is 23, the traffic information602

acquisition benefits are almost the same. The result implies603

that mobile sensors have advantage in flexibility compared with604

fixed sensors. Mobile sensors are good at moving; thus, they can605

move to other more informative links.606

Experiments under slight and severe congested conditions607

[see Fig. 4(b) and (c)] show that the mobile sensor outperforms608

the fixed sensor when the number of sensors is small. The inter-609

section points of the two curves are 15 and 19, respectively. The610

advantage of the mobile sensor over the fixed sensor decreases611

as the traffic becomes congested. The performance gap between612

the mobile sensor and the fixed sensor decreases from slight613

congestion to severe congestion. For example, when the number614

of sensors is 17, the traffic information acquisition benefits are615

2, 1.98, and 1.87 for free flow, slight congestion, and severe616

congestion, respectively. By contrast, the information benefits617

are 1.9 for the fixed sensor.618

The three experiments indicate that, first, when the number619

of sensors is small, the mobile sensor outperforms fixed sensor620

regardless of traffic conditions. Given the limited number of621

mobile sensors, each mobile sensor has a larger space to move622

around in, and the performance of the mobile sensor is better. 623

The mobile sensor is relatively crowded when the number of 624

sensors is large. Second, when the number of sensors increases, 625

the advantage of mobile sensors gradually decreases. Particu- 626

larly, in congested traffic conditions, travel time between link 627

becomes longer. The advantage of mobile sensors weakens. 628

The fixed sensor outperforms the mobile sensor. Finally, as a 629

general trend, the advantage of the mobile sensor to the fixed 630

sensor gradually reduces and eventually disappears as the traffic 631

condition becomes extremely congested. This observation is 632

intuitive because the mobile sensor cannot move when the 633

whole network is completely congested. 634

C. Mobile Sensor Plus Fixed Sensor Versus Fixed Sensor 635

Under Different Traffic Conditions 636

Here, the fixed sensor network is assumed to be existent, and 637

its location has been optimized. We consider adding one more 638

mobile sensor to the fixed sensor network. Two experiments are 639

conducted under free flow conditions and severe congestion. 640

Fig. 5(a) and (b) show the results. Complete usage of fixed 641

sensors is employed as a comparison. The numbers on the x- 642

axis represent the number of sensors. Adding one more mobile 643

sensor always has a better performance than complete fixed 644

sensors experiment under both free flow and congested traffic 645

conditions. The average gap of the objective function value 646

between one more mobile sensor condition and all fixed sensors 647

are 0.11 and 0.05 for free flow and congested traffic conditions, 648

respectively. Free flow conditions give more performance ad- 649

vantage than congested traffic conditions. The potential appli- 650

cation of this observation is to employ a combination of the 651

mobile sensor and the fixed sensor to enhance performance. 652

Another application is to employ a mobile sensor for temporal 653

use during the maintenance period. 654

Table III summarizes the experiments. In most cases, the 655

mobile sensor outperforms the fixed sensor. Only when traffic 656

is congested and the number of sensors is large does the mobile 657

sensor perform worse than the fixed sensor. 658

D. Robust Experiment 659

To discuss the application of the proposed mobile-sensor 660

routing problem, two different kinds of experiments are 661
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Fig. 5. One additional mobile sensor plus fixed sensor versus fixed sensor under different conditions. (a) One additional mobile sensor plus fixed sensor versus
fixed sensor under free flow condition. (b) Mobile sensor versus fixed sensor under slight congestion.

TABLE III
SUMMARY OF MOBILE SENSOR VERSUS FIXED SENSOR

TABLE IV
ROBUSTNESS OF MOBILE SENSOR

designed to show the robustness of our model. One is to662

fluctuate the link travel time with certain percentage. The other663

is to incorporate the nonrecurrent incident factor.664

1) Stochastic Fluctuation of Travel Time: Six different ex-665

periments are conducted under this category. Stochastic fluctu-666

ation of travel time are set to 10%, 20%, 40%, 60%, 80%, and667

100%, respectively, based on the severe congestion condition.668

Stochastic fluctuation is designed to increase the travel time.669

Experiments of each percentage level are conducted for 100670

times. Traffic information acquisition benefits are recalculated671

for the original route results based on the stochastic fluctu-672

ated travel time. Comparative result between the stochastic673

fluctuated travel time and the severe congestion condition is674

in Table IV.675

2) Nonrecurrent Incident Caused Congestion: In reality, 676

traffic incident is not uncommon. A stochastic nonrecurrent 677

incident is also considered. Six different experiments are con- 678

ducted, and 3, 5, 7, 10, 12, and 14 links are randomly chosen as 679

fully congested links out of all 28 links. It is not very common 680

that more than 50% of the links are fully congested in reality. 681

Fully congested links are assumed unavailable for vehicles, and 682

the travel time is set to be extremely large. Traffic information 683

acquisition benefits are also recalculated for the original route 684

results based on the case of stochastic fully congested links. As 685

to each link that is fully congested, a shortest path is generated 686

between its adjacent two links that are not blocked. Therefore, 687

a new route is produced that bypasses these fully congested 688

links. Experiments for each number of fully congested situation 689

are conducted for 100 times. Comparison between the new 690

route of nonrecurrent incident caused congestion and the severe 691

congestion condition is also in Table IV. 692

Table IV shows the results of the robust experiments. A01, 693

A02, A04, A06, A08, and A10 represent that the stochastic 694

travel-time fluctuation is 10%, 20%, 40%, 60%, 80% and 100%, 695

respectively. B03, B05, B07, B10, B12, and B14 represent that 696

3, 5, 7, 10, 12, and 14 links are fully congested, respectively. 697

The results of the performance loss compared with the severe 698

congestion condition is shown in Table IV. It is shown that 699

performance of utilizing a mobile sensor does not lose very 700

much, although there is sharp increase in stochastic travel time 701

or high probabilistic traffic incident. 702

E. Mobile Sensor Route Analysis Based on 703

Topological Position 704

The numerical results are also analyzed on the route level. All 705

links on this transportation network is divided into five areas in 706

terms of its topological position (see Table V). AQ2707

The summation of stay time in each area of a mobile sensor is 708

calculated. The percentage of stay time in each area is obtained 709

accordingly. The mean of the highest percentage of stay time 710

among mobile sensors is 68.9%, which indicates that mobile 711
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TABLE V
LINK AREA PARTITION

Fig. 6. Proportion of stay time for five areas when number of mobile sensors
is ten.

TABLE VI
CLASSIFICATION OF LINKS BASED ON HEURISTIC INFORMATION VALUE

sensors spend most stay time on an identical area. Fig. 6 shows712

the difference of the stay time proportion in each area that is713

taken as an example. The number of sensors is ten for Fig. 6.714

Let us take the second mobile sensor as a further example. The715

proportion of this mobile sensor in different areas is 0.87, 0,716

0.03, 0.10, and 0.25. The sum of these proportions exceeds 1717

because some links are located in more than one area because of718

their topological position. The situation of the other number of719

mobile sensors has a similar stay-time proportion pattern with720

Fig. 6, which shows that mobile sensors spend most time in a721

limited number of areas.722

F. Mobile Sensor Route Analysis Based on723

Heuristic Information724

In ACO, heuristic information represents prior information.725

We now classify all links into different categories based on726

different heuristic information levels. Links are classified into727

three different levels based on heuristic information value728

(see Table VI).AQ3 729

Given the link classification based on heuristic information,730

the proportion of stay time in different heuristic information731

categories can be calculated. The results are shown in Fig. 7.732

The proportion of each category fits a curve, indicating that733

the proportion of stay time in high-heuristic information areas734

decreases monotonically. The proportion of stay time in low-735

Fig. 7. Proportion of stay time for different heuristic information
classification.

Fig. 8. maxpower = 12 versus fixed sensor.

heuristic information areas increases monotonically. Thus, mo- 736

bile sensors are inclined to move in high-heuristic information 737

areas when the number of mobile sensors is small. When the 738

number of sensors is large, stay time on high-heuristic infor- 739

mation areas decreases, and that on low-heuristic information 740

areas increases. 741

G. Sensitivity Analysis of Maxpower 742

In our proposed hybrid two-stage heuristic algorithm, a 743

key component in ACO that distinguishes our algorithm from 744

traditional ACO for the VRP is the design of the parameter 745

maxpower. Maxpower represents the maximum travel time of a 746

mobile sensor on the network. Two case studies are conducted 747

for maxpower = 12 and maxpower = 6, respectively. Fig. 8 748

shows a very similar pattern with Fig. 4(a). A comparison of 749

the results of maxpower = 12 and maxpower = 6 (see Fig. 9) 750

indicates that the case of maxpower = 12 shows a better 751
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Fig. 9. maxpower = 12 versus maxpower = 6.

TABLE VII
CLASSIFICATION OF LINKS BASED ON HEURISTIC INFORMATION VALUE

performance when the number of sensors is from 5 to 15.752

This observation can be explained by the fact that, when the753

number of sensors is small, a mobile sensor is supposed to754

have a relatively long distance route to gain a high traffic755

information acquisition benefits. However, the advantage of a756

large maxpower value weakens, and a mobile sensor is expected757

to move in a limited area in that more moves increase travel-758

time wastage.759

H. Hybrid Two-Stage Algorithm Performance760

To show the performance of our proposed hybrid algorithm,761

the results of simulated annealing and the genetic algorithm are762

employed for comparison. Experiments with different number763

of mobile sensors are conducted in both the simulated network764

and Nguyen–Dupius network[55]. All these experiments are765

done for 20 times, and statistics are extracted accordingly.766

Three statistics are mean, deviation, and best value of the 20767

experiments.768

Table VII shows these results. For the “ Instances ” column769

of Table VII, “SN-x” represents the experiments on simulated770

network with x number of mobile sensors. “ND-x” represents771

the experiments on the Nguyen–Dupius network with x number772

of mobile sensors. HB, GA and SA represents hybrid two-stage773

heuristic algorithm, genetic algorithm, and simulated anneal-774

ing, respectively. The results show that the proposed algorithm775

outperforms the GA and SA in all three criteria.776

Fig. 10. Computational time comparison between sequential and parallel
implementation.

Fig. 11. Mobile sensor versus fixed sensor for the Sioux–Fall network.

Regarding the computational time, it takes 0.89 h when the 777

number of mobile sensors is five. A parallel implementation in 778

a four-core machine decreases the computational time signifi- 779

cantly to 0.22 h. A comparison between the sequential and the 780

parallel implementation is shown in Fig. 10. 781

Fig. 10 shows that computational time dramatically de- 782

creases after the parallel implementation. As to sequential 783

implementation, computational time increases almost linearly 784

with the increase in the number of mobile sensors. However, 785

computational time keeps relatively stable for the parallel 786

implementation. The average time saving percentage is 73%, 787

which is significant. 788

1) Applicability in Practical Problems: Here, the Sioux–Fall 789

network is employed to show the practicability of our algo- 790

rithm. The Sioux–Fall network is widely used in transportation. 791

It has 76 links and 24 nodes. This experiment is conducted 792

under free flow condition. 793

In this experiment, different numbers of mobile sensors are 794

tested: 15, 25, 35, 45, 55, and 65. When the number of sensors is 795

35, the traffic information acquisition benefits is 1.87, which is 796

more than half of total benefits. The mobile sensor outperforms 797

the fixed sensor under free flow traffic conditions (see Fig. 11). AQ4798
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This numerical experiment shows that our proposed algorithm799

can be applied to practical transportation networks.800

V. CONCLUSION801

Traditionally, fixed traffic sensors are employed to collect802

traffic information. Given the lack of flexibility of fixed sensors,803

the mobile traffic sensors are introduced to enhance the traffic804

surveillance effect. This paper aims to design optimal routes for805

mobile traffic sensors to maximize traffic information acquisi-806

tion benefits.807

By considering the dynamics of transportation networks, we808

have proposed an information-capture-oriented mobile-sensor809

routing problem. Unlike traditional VRPs, our problem has two810

kinds of decision variables: the route variable and the stay-811

time variable. An objective function is designed to measure812

the traffic information acquisition benefits. A hybrid two-stage813

heuristic algorithm that combines PSO and ACO is designed814

to solve this mobile-sensor routing problem effectively. The815

mobile sensor outperforms the fixed sensor network in most816

cases. The route of a mobile sensor is normally restricted in a817

portion of the network. The sensitivity analysis of the parameter818

maxpower is also analyzed.819

The proposed problem differs from traditional VRPs in that it820

assumes that mobile sensors can benefit more if they stay on the821

customer side longer (the link is treated as the customer). Mo-822

bile sensor is helpful for both urban and freeway transportation823

network surveillance. In reality, the mobile sensors can be used824

alone or serves as a supplement to the fixed sensor network.825

The proposed information-capture-oriented VRP is applicable826

in many other applications. Future direction may consider the827

stochastic factor of the transportation network and design an828

optimal mobile-sensor route that maximizes expected traffic829

information acquisition benefits.830
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